Global Warming and the Dust Bowl: Two Successful Applications of NDP-041
Data in Classroom Learning

Dr.Mary Savina, Geology Department, Carleton College, Nort
Elizabeth Clark, Carleton College, Northfield, MN

$$
\begin{aligned}
& \text { PURPOSE } \\
& \text { The purpose of this project is to teach students what } \\
& \text { types of climatological data are available and what } \\
& \text { possible applications for this data exist. From this } \\
& \text { exercise, students use the NDPP-041 Historical } \\
& \text { Climatological Network data set to solve a problem. } \\
& \text { Students manipulate and interpret this data using EXCCL } \\
& \text { spreadsheets to calculate means and moving averages of } \\
& \text { temperature and precipitation. }
\end{aligned}
$$

PROBLEM \#1: GLOBAL WARMING

tudents evaluate the following

1) Has the earth been warming?
2) If so, is the warming rate steady through time?
3) Is warming uniform over the globe?

In order to answer these questions, students work in groups to analyze data from a wide distribution of climate stations, including those located at high latitudes. Students analyze data for stations that have long, complete records.
for individual stations. They also create plots of the 5 -year moving average of temperature (Figs. 1 and 2). These plots enable them to analyze short- and long-term variations in temperature.
$\begin{aligned} & \text { DATA SET } \\ & \text { The data (NDP-041) used in this exercise are from the Historical }\end{aligned}$
$\begin{aligned} & \text { Climatology Network at the Carbon Dioxide Information Analysis } \\ & \text { Center based in Oak Ridge National Laboratories, Tennessee. The }\end{aligned}$
$\begin{aligned} & \text { Center based in Oak Ridge National Laboratories, Tennessee. The } \\ & \text { main CDIAC site is: http://cdiac.esd.ornl.gov/ These data are }\end{aligned}$
available on the CDIAC ftp web site: ftp://cdiac.esd.ornl.gov/ndp041
For information regarding data sources, see the readme file.
Temperature and precipitation data are located in "precip.data. Z "
$\begin{aligned} & \text { and "temp.data.Z". These files contain total monthly precipitation in } \\ & \text { tenths of millimeters for } 7533 \text { stations worldwide and mean monthly }\end{aligned}$
$\begin{aligned} & \text { tenths of millimeters for } 7533 \text { stations worldwide and mean monthly } \\ & \text { temperature in tenths of degrees Celsius for } 6039 \text { stations }\end{aligned}$
worldwide. These data span the period from 1693 (1701 for
pressure) to 1990. Corresponding station inventories, including
station number, name, location, dates of record, and percent data
missing, are in precip.statinv and temp.statinv. These files are also
$\begin{aligned} & \text { available and easier to use in CD-ROM format from the CDIAC. } \\ & \text { Because the data files are so large, users should open them in Word }\end{aligned}$
$\begin{aligned} & \text { Because the data files are so large, users should open them in Word } \\ & \text { and then select and paste the data sets from particular stations into }\end{aligned}$
Excel. The "text to columns" command readies the data for analysis.
$\begin{aligned} & \text { Excel. The "text to columns" command readies the data for analysis. } \\ & \text { We have found it most convenient to replace the -999 code for }\end{aligned}$
missing data with blank cells. We do these steps for introductory
geoscience students to allow them to focus on statistical analysis and
$\begin{aligned} & \text { graph interpre } \\ & \text { original files. }\end{aligned}$

DATA SET AVAILABILITY

Temperature and precipitation data on NDP-041 is not available after 1990. Internet-based sources, such as the National Climatic Data Center, have been used as a means of completing the later stages of this record with little
success. Record lengths are variable from station to station with the longest records from western Europe. The availability of data outside of western Europe has increased during the past 300 years due to European colonization. Significant gaps in data exist in sparsely-populated areas of northern North
America, central South America, northern Africa, the Tibetan plateau, the East America, centrat South America, northe
Indies, and Antarctica (NDP041.DES).

Toronto temperatures, with 5 year moving average

言 6	$\begin{array}{c}\text { 1951-1980 average } \\ \text { annual temperature }\end{array}$

${ }_{1945} 1950195519601965197019751980198519901995$
Figure 1. Monthly temperatures, annual average temperature, and 5 -year
moving average of monthly temperatures for Toronto, Canada from 1951 1990. Graph shows temperature decline during first years of record

1955s), stable temperatures in 1966
19805 , and 1990 high is spuri

PROBLEM \#2: THE DUST BOWL

Three questions are posed about clima
 change during the Dust Bow

1) What happened climatologically during the Dust Bowl years?
2) Were heat and dryness confined to the classic "Dust Bowl" area of the High Plains?
For this exercise, students look at monthly and annual precipitation and temperature
data from 1890 to 1950 at stations across North Americe. Time permitting they data from 1890 to 1950 at stations across North America. Time permitting, they also
use monthly precipitation data to investigate the possibility that the frequency of high intensity rainfall, which would not be absorbed, changed during the Dust Bowl year and may affect analysis of mean annual precipitation.
Students plot the mean annual precipitation, 5 -year and 10 -year moving averages of
annual precipitation and monthly precipitatio to annual precipitation and monthly precipitation to compare long-term and short-term
precipitation trends (Fig. 2). Students plot the 10 -year moving average of annual precipitation trends (Fig. 2). Students plot the 10 -year moving average of annual
temperature and the 5 -year moving average of annual precipitation in order to examine the combined effects of these factors in creating drought conditions (Fig. 3). In attempting to analyze the short-term intensity of precipitation, students plot the 5 - and 10 -year moving averages of summer precipitation (Fig. 4).

> CONCLUSIONS
> Each pair of students prepares a short power point presentation with graphs and interpretation from their analyses. These used by all sue stor a course server and exam.
By
> By presenting analyses of precipitation and Emperature data from individual stations oridwide, students are able to interpret climate rends related to global warming and the Dust bout climate, students also learn about the seographic and temporal availability of data, as well as tools in Excel that can be used for doing simple statistics and preparing graphs. They learn to interpret graphical data and to combine their work with that of other students.

Toronto summer precipitation,
June+July+August

Figure 4. 5 - and 1 - Year morving averages of summer precipitation (June, July, and August) in Toronto, Canada from 1840-2000. This graph shows signi
precipitation lows in 1870 s, 1890 , and 1910 on 5 yr. moving average, precipiatiton lows in 1930 sand 1890 on on 10 yr. moving average, and much less
precipiation
varibity post 1944 .

