Name:	<u>MASTER</u>	Partner:	Rev. 0
			20 Santambar 2025

Earth Orbital Mechanics & Solar Irradiance; Part I – Theoretical Model [5] (MATLAB Programming Assignment)

Experiment 3: Questions

Link for the NASA Julian Day time calculator $\rightarrow \underline{\text{https://www-air.larc.nasa.gov/tools/jday.htm}}$ Answer the following questions:

- 1. Consider the equation for the solar declination angle: $\delta_s = \Phi_r \cos[2\pi(time 173.0)/T_{ORBIT}]$
 - $[\frac{1}{2}]$ a. Solve this equation for the *time* variable when the argument of the cosine function is 0.

By inspection: time = 173.0

[1] b. Using the NASA Julian Day time calculator, report the calendar date for this *time* and confirm the approximate correct value for solar declination angle on the data plot.

Date: $\underline{22 \text{ June}}$ $\delta_S = \underline{+23.45^\circ}$ degrees Summer Solstice

[$\frac{1}{2}$] c. Solve this equation for the *time* variable when the argument of the cosine function is $\pi/2$.

 $\pi/2 = 2\pi (time - 173.0)/T_{ORBIT};$ $time = T_{ORBIT}/4 + 173$ Autumnal Equinox

[1] d. Using the NASA Julian Day time calculator, report the calendar date for this *time* and confirm the approximate correct value for solar declination angle on the data plot.

Date: $\underline{21 \text{ September}} \ \underline{7:30 \text{ am}}$ $\delta_S = \underline{0.0}$ degrees

- [2] b. Consider the definition of solar zenith angle provided in the lecture notes, what is the *physical interpretation* of a **negative** value for the cosine for the solar zenith angle?
 - Solar zenith angles are greater than 90°
 - The Sun is below the horizon \rightarrow no solar irradiance at the top of the atmosphere