Contents
%Rankine Cycle with Supercritical pressure% % In water, the critical point occurs at 647.096 K (373.946 °C; 705.103 °F) % and 22.064 megapascals (3,200.1 psi; 217.75 atm).[2]
Given
clear T_H = (1000 - 32) * (5/9) ; % Boiler temperature (1000 F) W_dot_net = 512 * 10^6; % Plant Outpu (512 MW) T_C = 25 ; %Condenser temperature (25 C)
Required
Find the optimum Boiler pressure to increase the plant efficiency subjected to the design constraint of Steam quality at the Turbine exit pressure > 0.85. Calculate the required mass flow rate Plot this parameteric study on appropriate axis.
Solution
% State 1, Boiler exit/Turbine inlet for i = 1:200 p1(:,i) = 5 + i*5; %bar input variable T1 = T_H; h1 = XSteam('h_pT', p1(i), T1); %kj/kg s1 = XSteam('s_pT', p1(i), T1); %kj/kg % State 2, Turbine exit/Condenser inlet s2 = s1; p2 = XSteam('psat_T', T_C); h2 = XSteam('h_ps', p2, s2); %kj/kg x2(:,i) = XSteam('x_ps', p2, s2); %kj/kg % State 3, Condenser exit/Pump inlet x3 = 0; T3 = T_C; s3 = XSteam('sL_T',T3); %kj/kg h3 = XSteam('hL_T', T3); %kj/kg p3 = XSteam('psat_T', T3); %convert Pascals to bar % State 4, Pump exit/Boiler inlet s4 = s3; p4 = p1(i); h4 = XSteam('h_ps', p4, s4); %kj/kg T4 = XSteam('T_ps', p4, s4); %C % Component energy balances w_t = (h1-h2); %turbine q_cond = (h2-h3); %condenser w_p = (h4-h3); %pump q_b = (h1-h4); %boiler % check on solution using an overall energy balance %check_1 = (W_dot_t\m_dot)+(Q_dot_cond\m_dot)-(W_dot_p\m_dot)-(Q_dot_b\m_dot); w_net = w_t - w_p; % kJ/kg net specific work or simply net power per mass m_dot(:,i) = W_dot_net/w_net *2.2*60*60/1000;% mass flow rate in lbm/hr eta_Rankine(:,i) = w_net / q_b; %efficiency heat_rate_BtupkWhr = 3412./eta_Rankine ; %heat rate, in Btu/kW-hr eta_max = 1- ((T_C+273) /(T_H+273)); %maximum possible efficiency end figure hold on yyaxis left title('Effect of Boiler Pressure') plot(p1, eta_Rankine); xlabel('Boiler Pressure (bar)') ylabel('Efficiency [-]') yyaxis right plot(p1, x2); xlabel('Boiler Pressure (bar)') ylabel('Turbine Exit X [-]') hold off figure plot(p1, m_dot); title('For Power Output 512 MW') xlabel('Boiler Pressure (bar)') ylabel('Mass Flowrate [lbm/hr]')

