Name:

Using the provided Matlab functions create the below plots showing the variation of engineering properties with respect to the fiber angle θ for graphite-reinforced composite. The material properties are given on the next page.

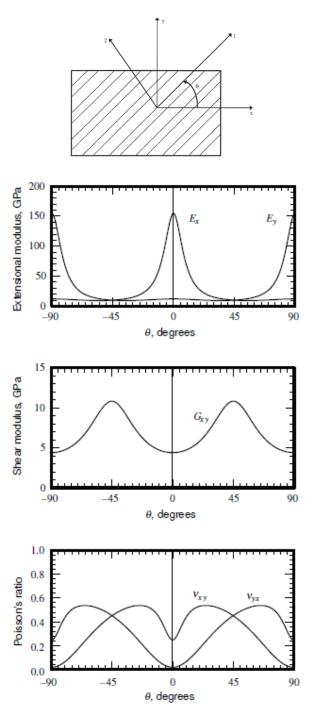


TABLE 2.1. Typical engineering properties of several materials

	Graphite-polymer composite ¹	Glass-polymer composite	Aluminum
$\overline{E_1}$	155.0 GPa	50.0 GPa	72.4 GPa
E_2^1	12.10 GPa	15.20 GPa	72.4 GPa
E_2 E_3	12.10 GPa	15.20 GPa	72.4 GPa
v_{23}^{-3}	0.458	0.428	0.300
v_{13}^{23}	0.248	0.254	0.300
v_{12}^{13}	0.248	0.254	0.300
$G_{13}^{v_{12}}$	3.20 GPa	3.28 GPa	2
G_{13}^{23}	4.40 GPa	4.70 GPa	2
G_{12}^{13}	4.40 GPa	4.70 GPa	2
α_1	-0.01800×10^{-6} /°C	6.34×10^{-6} /°C	22.5×10^{-6} /°C
α_2	24.3×10^{-6} /°C	23.3×10^{-6} /°C	22.5×10^{-6} /°C
	24.3×10^{-6} /°C	23.3×10^{-6} /°C	22.5×10^{-6} /°C
β_1^3	$146.0 \times 10^{-6} / \% M$	$434 \times 10^{-6} / \% M$	0
β_2	$4770 \times 10^{-6} / \% M$	$6320 \times 10^{-6} / \% M$	0
β_3^2	$4770 \times 10^{-6} / \% M$	$6320 \times 10^{-6} / \% M$	0

 $^{^{1}}$ In the chapters to follow it will be assumed that a layer thickness is 150×10^{-6} m, or 0.150 mm. $^{2}G = E/2(1 + v)$.

$$E_x = \frac{E_1}{m^4 + \left(\frac{E_1}{G_{12}} - 2\nu_{12}\right)n^2m^2 + \frac{E_1}{E_2}n^4}$$

$$E_y = \frac{E_2}{m^4 + \left(\frac{E_2}{G_{12}} - 2\nu_{21}\right)n^2m^2 + \frac{E_2}{E_1}n^4}$$

$$G_{xy} = \frac{G_{12}}{n^4 + m^4 + 2\left(2\frac{G_{12}}{E_1}\left(1 + 2\nu_{12}\right) + 2\frac{G_{12}}{E_2} - 1\right)n^2m^2}$$

$$v_{xy} = \frac{v_{12}(n^4 + m^4) - \left(1 + \frac{E_1}{E_2} - \frac{E_1}{G_{12}}\right)n^2m^2}{m^4 + \left(\frac{E_1}{G_{12}} - 2v_{12}\right)n^2m^2 + \frac{E_1}{E_2}n^4}$$

$$v_{yx} = \frac{v_{21}(n^4 + m^4) - \left(1 + \frac{E_2}{E_1} - \frac{E_2}{G_{12}}\right)n^2m^2}{m^4 + \left(\frac{E_2}{G_{12}} - 2v_{21}\right)n^2m^2 + \frac{E_2}{E_1}n^4}$$