Name: Using the provided Matlab functions create the below plots showing the variation of engineering properties with respect to the fiber angle θ for graphite-reinforced composite. The material properties are given on the next page. TABLE 2.1. Typical engineering properties of several materials | | Graphite-polymer
composite ¹ | Glass-polymer
composite | Aluminum | |-------------------|--|------------------------------|---------------------------| | $\overline{E_1}$ | 155.0 GPa | 50.0 GPa | 72.4 GPa | | E_2^1 | 12.10 GPa | 15.20 GPa | 72.4 GPa | | E_2 E_3 | 12.10 GPa | 15.20 GPa | 72.4 GPa | | v_{23}^{-3} | 0.458 | 0.428 | 0.300 | | v_{13}^{23} | 0.248 | 0.254 | 0.300 | | v_{12}^{13} | 0.248 | 0.254 | 0.300 | | $G_{13}^{v_{12}}$ | 3.20 GPa | 3.28 GPa | 2 | | G_{13}^{23} | 4.40 GPa | 4.70 GPa | 2 | | G_{12}^{13} | 4.40 GPa | 4.70 GPa | 2 | | α_1 | -0.01800×10^{-6} /°C | 6.34×10^{-6} /°C | 22.5×10^{-6} /°C | | α_2 | 24.3×10^{-6} /°C | 23.3×10^{-6} /°C | 22.5×10^{-6} /°C | | | 24.3×10^{-6} /°C | 23.3×10^{-6} /°C | 22.5×10^{-6} /°C | | β_1^3 | $146.0 \times 10^{-6} / \% M$ | $434 \times 10^{-6} / \% M$ | 0 | | β_2 | $4770 \times 10^{-6} / \% M$ | $6320 \times 10^{-6} / \% M$ | 0 | | β_3^2 | $4770 \times 10^{-6} / \% M$ | $6320 \times 10^{-6} / \% M$ | 0 | $^{^{1}}$ In the chapters to follow it will be assumed that a layer thickness is 150×10^{-6} m, or 0.150 mm. $^{2}G = E/2(1 + v)$. $$E_x = \frac{E_1}{m^4 + \left(\frac{E_1}{G_{12}} - 2\nu_{12}\right)n^2m^2 + \frac{E_1}{E_2}n^4}$$ $$E_y = \frac{E_2}{m^4 + \left(\frac{E_2}{G_{12}} - 2\nu_{21}\right)n^2m^2 + \frac{E_2}{E_1}n^4}$$ $$G_{xy} = \frac{G_{12}}{n^4 + m^4 + 2\left(2\frac{G_{12}}{E_1}\left(1 + 2\nu_{12}\right) + 2\frac{G_{12}}{E_2} - 1\right)n^2m^2}$$ $$v_{xy} = \frac{v_{12}(n^4 + m^4) - \left(1 + \frac{E_1}{E_2} - \frac{E_1}{G_{12}}\right)n^2m^2}{m^4 + \left(\frac{E_1}{G_{12}} - 2v_{12}\right)n^2m^2 + \frac{E_1}{E_2}n^4}$$ $$v_{yx} = \frac{v_{21}(n^4 + m^4) - \left(1 + \frac{E_2}{E_1} - \frac{E_2}{G_{12}}\right)n^2m^2}{m^4 + \left(\frac{E_2}{G_{12}} - 2v_{21}\right)n^2m^2 + \frac{E_2}{E_1}n^4}$$