
Conduction and Convection in a Fin of Uniform Cross Section

Yuxin Zhang

School of Engineering and Applied Sciences

Washington State University Tri-Cities

yx.zhang@wsu.edu

1 Problem Statement

Conduction and convection are two important modes of heat transfer. To understand the mecha-

nisms of these two types of heat transfer processes, we study the temperature distribution in a fin

of uniform cross section through analytical and numerical approaches. Various boundary conditions

are investigated to demonstrate the effects of conduction and convection on the temperature dis-

tribution. Some of the related engineering applications of this study include the design of a heat

exchanger with fins or a thermal radiator.

2 Learning Outcomes

Upon completing this project, students should learn to solve the temperature distribution along

a one-dimensional fin analytically and numerically. Specifically, students learn to solve diffusion

equations with source using the finite volume method and implement the algorithm via MATLAB

programming. Students are expected to build a MATLAB App to perform parametric studies and

to visualize the simulation results.

3 Context for Use

This activity can be used in junior/senior level engineering courses such as heat transfer and com-

putational fluid dynamics or in a physics course on the concepts of conduction and convection. It

requires students to investigate the temperature distribution along a one-dimensional fin through

analytical and numerical approaches. Several parameters and boundary conditions are to be inves-

tigated, which makes the study comprehensive and challenging. Students are expected to complete

the project within one week including modeling and simulation. A written report is required to

address all questions and exercises in the activity.

The prerequisites of this project are some familiarity with undergraduate-level heat transfer,

ordinary differential equations, and numerical analysis. Students are expected to know some common

techniques in solving ordinary differential equations analytically. Also, students need to understand
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the basic procedures in solving diffusion equations with source, numerically using the finite difference

or finite volume method. This activity provides students with the opportunity to develop their

computational skills on MATLAB programming and MATLAB App building.

4 Mathematical Model

The heat transfer process in a fin of uniform cross section is governed by two physical laws: Fourier’s

law and Newton’s law of cooling [1]. Assume the fin has a length of L and a constant cross-sectional

area A. The temperature at the base (x = 0) of the fin is fixed at T (0) = Tb. The right end (x = L)

of the fin is subject to varying boundary conditions. The lateral surface of the fin is exposed to

a moving fluid at temperature Tfluid with a convective heat transfer coefficient h. If we take a

finite element of length dx from the fin, this small slice of material undergoes conduction along the

axial direction and convective cooling/heating on the external surface. Assume the conductive heat

transfer rates on the two sides of the element are qx and qx+dx and the differential convection rate

through the side surface is dqs (see Figure 1).

Figure 1. Schematic of energy balance for an element of the fin

Applying the principle of conservation of energy to the finite element gives:

qx = qx+dx + dqs. (1)

From Fourier’s law [1], we know that qx = −kAdT
dx where k is the thermal conductivity of the

material. The heat rate at the right side of the element can be approximated using a 1st-order Taylor

series expansion qx+dx = qx + dqx
dx dx. The differential heat transfer rate dqs due to convection is

determined by the Newton’s law of cooling [1] dqs = hdAs(T − Tfluid) where dAs is the lateral

surface area of the finite element.

Substituting the above quantities into (1), we can derive the governing equation for temperature

distribution T (x) in a fin as follows:
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d2T

dx2
− hp

kA
(T − Tfluid) = 0, (2)

where p is the perimeter of the cross section and p = dAs

dx . The temperature distribution T (x) is

affected by the thermal conductivity k of the material, the perimeter p and area A of the cross

section, the ambient fluid temperature Tfluid, and the convective heat transfer coefficient h.

If we define a new temperature variable Φ(x) ≡ T (x)− Tfluid, (2) reduces to

d2Φ

dx2
− C2Φ = 0, (3)

where C2 = hp
kA . It can be verified that the solution of (3) takes the form of Φ(x) = AeCx +Be−Cx.

Here the coefficients A and B can be evaluated using the boundary conditions at the two ends of

the fin.

Now we need to specify the boundary conditions. According to the experiments, the temperature

at the base (x = 0) is fixed by T (0) = Tb. Thus, Φ(0) ≡ T (0) − Tfluid = Tb − Tfluid ≡ Φb. In

accordance with the experimental setups, the boundary condition at the tip (x = L) can be specified

by one of the following:

• A prescribed temperature Φ(L) = ΦL.

• A prescribed flux dΦ
dx |x=L

= qf . If qf = 0, it is an insulated (adiabatic) tip.

• A convective condition −k dΦ
dx |x=L

= hΦ(L).

Then, the temperature distribution Φ(x) can be obtained from solving (3) with boundary con-

ditions.

4.1 Example

Consider a slender, finite-length fin with a convective tip. Derive the expression of the temperature

distribution in the fin.

From the above analysis, we know that the solution can be represented by Φ(x) = AeCx+Be−Cx

with unknown coefficients A and B. The two boundary conditions are Φ(0) = Φb and −k dΦ
dx |x=L

=

hΦ(L). Substituting Φ(x) into boundary conditions gives:

Φb = A + B

−kC(AeCL −Be−CL) = h(AeCL + Be−CL). (4)

The coefficients A and B can be determined by solving the equation system (4). Then, the

temperature distribution Φ(x) in the fin is

Φ(x) =
coshC(L− x) + h

Ck sinhC(L− x)

coshCL + h
Ck sinhCL

Φb. (5)

A plot of the temperature T (x) = Tfluid +Φ(x) in a fin with specified geometric and thermophysical

conditions can be found by the curve of the analytical solution in §5.
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4.2 Exercises

(i) Solve for the temperature distribution in a fin when the tip temperature is prescribed at

T (L) = Ttip.

(ii) Solve for the temperature distribution in a fin when the tip is insulated, i.e., dΦ
dx |x=L

= 0.

(iii) Replace the above circular fin by a rectangular fin with the same cross-sectional area. Discuss

how this shape change affects the temperature distribution.

5 Numerical Simulations

The steady-state equation (2) with boundary conditions is solved numerically using the finite volume

method [2]. The computational domain is divided into N node-centered control volumes or cells, as

shown in Figure 2. The grid has a uniform mesh size of ∆x = L
N . Integration of (2) over a control

volume gives

Figure 2. The grid

∫
S

dT

dx
−→n dS −

∫
V
C2(T − Tfluid)dV = 0, (6)

where the integrals in (6) are evaluated locally within each control volume. The first surface integral

represents the heat flux through the surfaces of a control volume. The second volume integral can

be regarded as a source term within the control volume. For example, evaluating (6) over control

volume 3 gives

(dT
dx

)
e
−
(dT
dx

)
w
− C2(TP − Tfluid)∆x = 0. (7)

Here the subscripts e and w refer to the east and west surfaces of the control volume. P represents

the center of the control volume. The two temperature gradients in (7) can be evaluated using linear

approximations with temperatures at neighboring cells 2 and 4. Therefore, for internal cells from 2

to N − 1, replacing the temperature gradients in (7) gives

TE − TP

∆x
− TP − TW

∆x
− C2(TP − Tfluid)∆x = 0, (8)
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where the subscripts E and W refer to the center nodes of the east and west cells around the P cell.

For boundary cells 1 and N , the temperature gradients in (7) need to be evaluated using the given

boundary conditions (see Appendix A in §6). Then, we can establish a system of N discretized

equations. The temperature distribution T (x) at each cell node can be calculated by solving the

system of linear equations.

Figure 3 shows an interactive user interface for simulating the temperature distribution in a fin

with varying tip conditions. On the left panel, the dimensions (length L, cross-sectional area A and

perimeter p) of the fin and the thermophysical properties (thermal conductivity k and convective

heat transfer coefficient h) can be entered. The ambient temperature condition is determined by

the fluid temperature (Fluid T). For boundary conditions, the temperature on the left is prescribed

at a base temperature (Base T). The condition on the right can be set up from the dropdown list

and the corresponding tip temperature (Tip T) or flux (Tip Flux) is to be entered. On the right

panel, users can input data from experiments. The middle panel shows the result of temperature

distribution in the fin. The top plot shows the comparison of results from simulation (blue line with

square markers), analytical solution (red line), and experiment (yellow circles). The error indicates

the difference between the numerical solution and the exact solution. The bottom scales present the

temperature distribution from the simulation.

Figure 3. Temperature distribution MATLAB App

5.1 Numerical Exercises

(i) Investigate the interaction between conduction and convection by changing the values of

thermal conductivity k and convective heat transfer coefficient h. If k � h, what is the temperature

distribution when the tip is maintained at a constant room temperature? Explain the corresponding
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physical condition for this case. What happens if k � h? How is heat transferred in the fin?

(ii) Assume that the ambient fluid temperature remains constant. If a circular fin is under the

convective tip condition, how could one increase the heat transfer rate by changing other parameters?

Then, replace the above circular fin by a square bar with the same cross-sectional area. Discuss how

this shape change affects the temperature distribution, especially the tip temperature.

(iii) What is the difference between the adiabatic and the convective tip conditions? To reach

the same tip temperature, how are these two conditions related to the length of the fin?

(iv) How could one improve the accuracy of a numerical solution, especially when sharp gradients

exist in the solution?

6 Appendix A

Here are the discretized equations for boundary cells in the finite volume scheme. For cell 1, the

temperature is fixed at Tb on the left:

TE − TP

∆x
− TP − Tb

∆x/2
− C2(TP − Tfluid)∆x = 0. (A.1)

For cell N , the discretized equation depends on the boundary condition on the tip: (i) a pre-

scribed temperature Ttip,

Ttip − TP

∆x/2
− TP − TW

∆x
− C2(TP − Tfluid)∆x = 0; (A.2)

(ii) a prescribed flux qf ,

qf
k

+
TP − TW

∆x
+ C2(TP − Tfluid)∆x = 0; (A.3)

(iii) a convective condition −k Ttip−TP

∆x/2 = h(Ttip − Tfluid),

2h

h∆x + 2k
(Tfluid − TP )− TP − TW

∆x
− C2(TP − Tfluid)∆x = 0. (A.4)

7 Appendix B: Hints for Selected Exercises

§4.2(i) We know that the solution can be represented by Φ(x) = AeCx + Be−Cx with unknown

coefficients A and B. The two boundary conditions are Φ(0) = Φb and Φ(L) ≡ T (L) − Tfluid =

Ttip − Tfluid ≡ ΦL. Substituting Φ(x) into boundary conditions gives:

Φb = A + B

ΦL = AeCL + Be−CL. (B.1)

The coefficients A and B can be determined by solving the equation system (B.1). Then, the

temperature distribution in the fin is
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Φ(x) =
sinhC(L− x) + ΦL

Φb
sinhCx

sinhCL
Φb. (B.2)

§4.2(ii) This problem can be solved in a similar fashion. The two boundary conditions are

Φ(0) = Φb and dΦ
dx |x=L

= 0. Substitute the general expression of Φ(x) into boundary conditions:

Φb = A + B

0 = C(AeCL −Be−CL). (B.3)

The coefficients A and B can be determined by solving the equation system (B.3). Then, the

temperature distribution in the fin is

Φ(x) =
coshC(L− x)

coshCL
Φb. (B.4)

§5.1(i) For a fin with fixed temperatures on both ends, the effect of conduction dominates if

k � h. The convective heat transfer between the lateral surface of the bar and the ambient fluid

flow can be ignored. The temperature distribution has a linear trend. If k � h, it indicates the

material has a very low thermal conductivity and there is a strong convection between the lateral

surface of the bar and the ambient fluid flow.

§5.1(ii) The heat transfer rate can be increased by replacing the ambient fluid by fluids with

higher convection heat transfer coefficients. Changing the circular rod to a square bar with the

same cross-sectional area will slightly lower the temperature at the tip. This can be verified from

the MATLAB App.

§5.1(iii) The convective tip condition assumes an energy balance between conduction and con-

vection at the tip, while the adiabatic tip condition assumes convective heat transfer at the tip is

negligible. Therefore, a bar with the adiabatic tip needs to be longer than a bar with the convective

tip to reach the same tip temperature.

§5.1(iv) The accuracy of the numerical solution for this one-dimensional problem can be improved

by using a finer uniform mesh or a non-uniform mesh where the grid is finer when sharp gradients

exist.
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