Teaching Control Engineering Courses: MATLAB & Simulink to Improve Student Engagement & Understanding

Silvio Simani

Department of Engineering, University of Ferrara.

Ferrara (FE), ITALY

Email: silvio.simani@unife.it

URL: www.silviosimani.it

- Control courses in Engineering curricula
- From in-person to remote teaching
- Engaging students
 - MATLAB & Simulink to improve understanding
 - Bridging theory & practice: examples
- Is a recipe for success?
- Final remarks

Digital Control Systems Syllabus

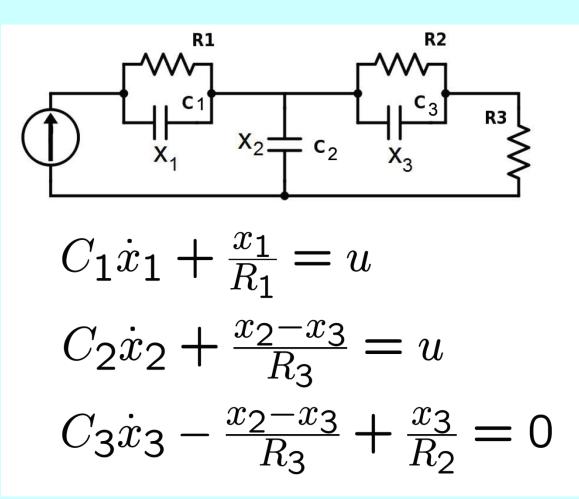
- 3rd year BSc Informatics & Elecronics Engineering
- Knowledge
 - Digital Control Systems theory: models & tools in discretetime
- Abilities
 - Analysis & design of digital controllers for linear systems
 - Direct digital design techniques & mappings from continuous time to discrete time (MATLAB + Simulink)

Teaching Strategy

Planned (until February 2020)

- Blended learning
 - Online educational materials (pre-recorded videos)
 - Laboratory experiences & discussion (in person)
- ✓ Acual (from March 2020)
 - Asyncronous & pre-recorded videos (YouTube)
 - Theory lectures (< 30')
 - Laboratory experiences & tutorials (guided hands-on, < 90')
 - Teacher-Student Interactions
 - By email (98%, requested by students)

Engaging Students



Engaging Students (cont'd)

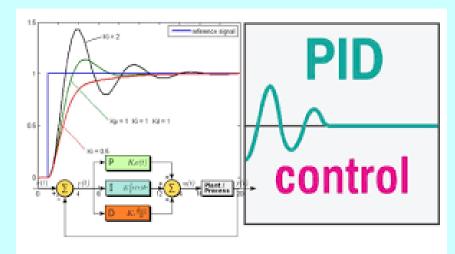
- Main point (to me)
 - Best selection of platforms & technologies
 - Very first experience of remote teaching!
- Attract student attention
 - 1. Learning by doing
 - bridging theory & practice
 - 2. Real & realistic examples
 - Cooperations with industries, technology transfer projects
 - 3. Semi-automated design tools (GUI)
 - MATLAB -> Simulink

1. Learning by Doing

Computation of the transfer function

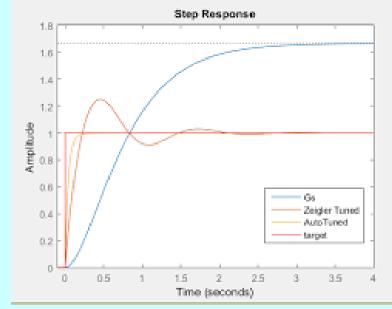
1. Learning by Doing (cont'd)

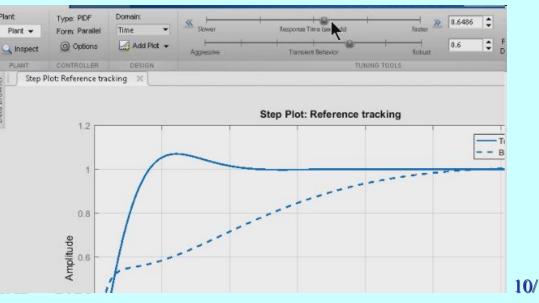
>Symbolic Toolbox


Parameters : $C_1 = C_2 = C_3 = 0,1$; $R_1 = R_2 = 10$; $R_3 = 5$;

- >> C1=0.1; C2=0.1; C3=0.1; R1 = 10; R2 = 10; R3 = 5;
- >> A=double(subs(A));
- >> B=double(subs(B));
- >> sys=ss(A,B,C,0)

2. Real Application


- Example: PID control
- > Jeep Wrangler Engine
- Technology transfer project
- ✓ Theory/Practice
 - Ziegler-Nichols
 - Simulink Control Design
 - PID auto-tuning



3. Semi-Automated Design

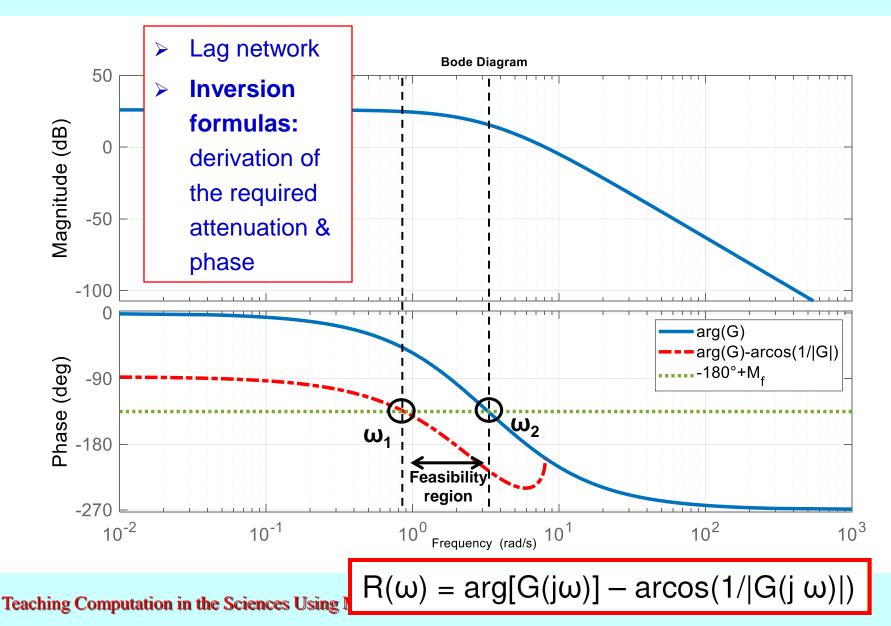
- Example: PID controllers
- ✓ Design approach
 - GUI/auto-tuning
- ✓ To practice
 - PID parameters
 - Simulink block
 - Comparison Z-N &
 - autotuning

3. Semi-Automated Design (cont'd)

> Automated design

$$F(\tau_1, \tau_2) = M^* e^{j\varphi^*} = \frac{1+j\tau_1\omega^*}{1+j\tau_2\omega^*}$$

network


≻ Lag

- Inversion formulas
- Required
 attenuation M* at
 the frequency ω*
- ✓ Given M_f
- > Phase variation ϕ^*

$$\tau_1 = \frac{M^* - \cos \varphi^*}{\omega^* \sin \varphi^*}$$
$$\tau_2 = \frac{\cos \varphi^* - \frac{1}{M^*}}{\omega^* \sin \varphi^*}$$

 $\pmb{\phi^{\star}} = -\ 180^{\circ} + \pmb{M_F} - arg[G(j\omega^{\star})]$

3. Semi-Automated Design (cont'd)

12/

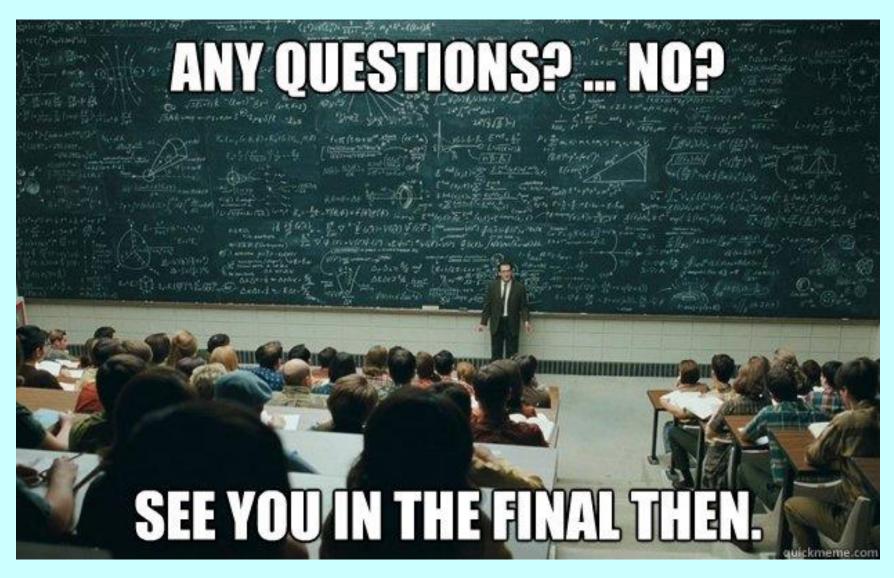
A Recipe for Success?

Quality Assessment

- Exam (online, this year)
 - Multiple choice questions (theory)
 - Simulink project (practice)
- ✓ Student surveys
 - Course evaluation questionnaire
 - 12 questions (teacher quality, effectiveness & interest, course structure, course contents, hands on & labs)
 - 2 more questions on online methods (this year)

✓ Exam scores

- average & std. dev. values + failure rates
- Better results than 2019 (in-person)!


Concluding Remaks & Further Works

- Student engagement
 - Theory & practice integration
 - ✓ Matlab & Simulink tools

> Teaching & learning strategies improvement

- i. Matlab Live Scripts (Simulink?)
- ii. Matlab Grader (in Moodle, June 2020)
 - Google forms & Classroom (most frequently used)
- iii. Interactive video quizzing (theory, knowledge)

Thanks You for Listening

