## Solutions to the Phase Lead Design Example

```
s = tf('s');
Gs = 1/(s*(s+3)*(s+21));
[numGs,denGs] = tfdata(Gs,'v'); % Required for the Simulink implementation
Rs = (s/3 + 1)/(s/100 + 1); % Zero in -3 e pole in -100 per la phase
    % lead network
[numRs,denRs] = tfdata(Rs,'v'); % Simulink implementation
Ga = Rs * Gs; % Overall transfer function
rlocus(Ga) % The root locus is depicted
grid % The constant delta locus is depicted
K = rlocfind(Ga)
% Look for a point near to delta = 0.64
% The required gain is:
% K = 640. Try to find this value by
% a trial and error procedure in order
% to satisfy both the settling time Ta and
% the maximum overshoot S%
% Note that in general S% increases with K
% whilst Ta decreases while increasing K
% In this way, a trade-off value should be
% determined
\% The Simulink implementation is provided below
```



## Solutions to Phase Lag Design Example

```
s = tf('s');
Gs = 1/((s+1)*(s+2)*(s+10));
[numGs,denGs] = tfdata(Gs,'v'); % Simulink implementation
Cs=(s+1)/s % Continuous time regulator
[numCs,denCs]=tfdata(Cs,'v');
% Simulink implementation
Ga = Cs * Gs;
rlocus(Ga)
grid
K = rlocfind(Ga)
% It generates the root locus for the
% overall closed loop system
% Constant delta points of the locus
% It determines the gain near to delta = 0.9
% The staring value is K = 10.81
% The gain K satisfying the requirements
% is:
% K = 21. This value is determined using
% a trial and error procedure:
% In general, Ta decreases if K increases
% S% increases if K increases
%
% The final value is K = 10.81
%
% The Simulink implementation is reported below
```



## Soluzion to Phase Lag Design Example

```
s = tf('s');
Gs = 0.1/(s*(s+1)*(s+10));
[numGs,denGs] = tfdata(Gs,'v'); % Simulink implementation
Rs = (s/10 + 1)/(s/2 + 1); % Zero in -3 e pole in -100 for the
    % phase lag network
[numRs,denRs] = tfdata(Rs,'v'); % Simulink implementation
Ga = Rs * Gs; % Overall controlled system
rlocus(Ga) % The continuous time root locus is depicted
grid % The points at constant delta are depicted
K = rlocfind(Ga) % A point near to delta = 0.6 is determined
% The initial value can be K = 35 and a trial and error procedure is followed.
```

```
% The gain K satisfying the requirements is:
```

% The gain K satisfying the requirements is:
% K = 42. This value is finally found by
% K = 42. This value is finally found by
% following a trial and error procedure.
% following a trial and error procedure.
%
%
% The following meta-rules can help the design:
% The following meta-rules can help the design:
% In general, Ta increases is K decreases
% In general, Ta increases is K decreases
% Other possible values for K are also
% Other possible values for K are also
% 41 or 40, the performances are satisfied.

```
% 41 or 40, the performances are satisfied.
```

\% The Simulink implementation is reported below


