Introduction
 Conics and Geometric Optics 00000000
 The Refractor Problem 00000
 Uniform optical properties of Conics
 uniform reflection property of parabola

To show that

$$
\theta_{i}=\theta_{r}
$$

PROOF: Given two lines ℓ_{1} and ℓ_{2} with slopes m_{1} and m_{2} the tangent of the angle between them is given by:

$$
\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
$$

- slope of tangent line is $2 p / b$ so slope of the normal line is $-b / 2 p$.
- slope of reflected ray is 0 .
- slope of slope of incident ray is $\frac{b-p}{a}$.

So $\tan \theta_{i}=\frac{\frac{b-p}{a}+\frac{b}{2 p}}{1+\frac{b-p}{a} \frac{b}{2 p}}$

- and $\tan \theta_{r}=\frac{-b}{2 p}$
- easy exercise to show that $\tan \theta_{i}=\tan \theta_{r}$ and therefore $\theta_{i}=\theta_{r}$

