EPSC 220: Principles of Geochemistry Laboratory 1

Group 1

Solve the following equation for x :

$$
3 x^{3}+2 x^{2}+5 x-37.2=0
$$

Using the attached data calculate the $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ of the following reaction at 1 bar, 298 K:

$$
C^{\text {diamond }} \Leftrightarrow C^{\text {graphite }}
$$

Group 2

Integrate the following equation from 1 to 100 using both numerical methods (e.g., Scilab) and analytically using integration by parts:

$$
\ln (x)+3 x^{2}+2 x-5=0
$$

Using the attached data calculate the $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ of the following reaction at 1 bar, 298 K:

$$
\mathrm{NaAlSi}_{3} \mathrm{O}_{8}^{\text {plagioclase }} \Leftrightarrow \mathrm{NaAlSi}_{2} \mathrm{O}_{6}^{\text {clinopyroxene }}+\mathrm{SiO}_{2}^{\text {quartz }}
$$

Group 3

Using Newton's method find the solution of

$$
5 \ln (x)+6 \ln \left(x^{2}\right)-3 x+7=0
$$

Using the attached data calculate the $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ of the following reaction at 1 bar, 298 K :

$$
\mathrm{Mg}_{2} \mathrm{SiO}_{4}^{\text {olivine }}+\mathrm{SiO}_{2}^{\text {quartz }} \Leftrightarrow 2 \mathrm{Mg} \mathrm{SiO}_{3}^{\text {orthopyroxene }}
$$

Group 4

Find the solution to the following set of equations

$$
\begin{aligned}
& 2 x+4 y-7 z=0.4482643 \\
& 3 x+7 y+1.5 z=31.445008 \\
& x+y-z=2.8390049
\end{aligned}
$$

Using the attached data calculate the $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ of the following reaction at 1 bar, 298 K :

$$
\mathrm{CaCO}_{3}^{\text {aragonite }} \Leftrightarrow \mathrm{CaCO}_{3}^{\text {calcite }}
$$

NOTE: DATA NOT ATTACHED DUE TO COPYRIGHT RESTRICTIONS

