## Formula Challenge

Name $\qquad$
What do the following units represent? Use $D$ for distance, $T$ for time, $S$ for speed, or $A$ for acceleration.
$\qquad$ 1. 14 km $\qquad$ 4. 6 hours $\qquad$ 7. 14 mi
$\qquad$ 10. 1.4 m
$\qquad$ 2. $30 \mathrm{~m} / \mathrm{s}$ $\qquad$ 5. $12 \mathrm{~cm} / \mathrm{s}^{2}$
8. 3.2 sec
$\qquad$ $11.6 \mathrm{~cm} / \mathrm{min} / \mathrm{sec}$
$\qquad$ 3. 34 min
$\qquad$ 6. 150 mph
9. 25 ft
$\qquad$ 12. $3 \mathrm{~km} / \mathrm{hr} / \mathrm{sec}$

## Solve each problem! Be sure to show your work!

13. Goldie Goldfish, a speed swimmer, loves to race around the park's pond, which is 0.5 miles around. If she can swim 20 laps around the track in 2 hours, what is her average speed?
14. It takes Stu, a slimy slug, 20 minutes to travel from his favorite bush to the local trash can (a trip of 30 meters), how far can he travel in 1 hour ( 60 minutes)?
15. At exactly $2: 00 \mathrm{pm}$, Speedy the Snail crawls onto a meter stick at the 10 cm mark. If he reaches the 65 cm mark at exactly $2: 10 \mathrm{pm}$, what is his speed?
16. If it takes Leaping Louie 5 minutes to jump 3 blocks, how long will it take for him to jump 15 blocks?
17. If Bert the Bat travels eastward at 40 mph with a tail wind of 6 mph , what is his actual speed?
18. Toon Train is traveling at the speed of $10 \mathrm{~m} / \mathrm{s}$ at the top of a hill. Five seconds later it reaches the bottom of the hill and is moving at $30 \mathrm{~m} / \mathrm{s}$. What is the rate of acceleration of Toon Train?
19. Pete the Penguin loves to sled down his favorite hill. If he hits a speed of $50 \mathrm{~m} / \mathrm{s}$ after 5 seconds, what is his rate of acceleration? Hint: He starts at $0 \mathrm{~m} / \mathrm{s}$ at the top of the hill.
20. Monster Mike's truck decelerates from $72 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 6 seconds. What is his rate of deceleration?

## Formula Challenge Answer Key

D 1.14 km
T 4. 6 hours
D 7.14 mi
D 10.1 .4 m
S 2. $30 \mathrm{~m} / \mathrm{s}$
A $5.12 \mathrm{~cm} / \mathrm{s}^{2}$
T 8.3 .2 sec
A $11.6 \mathrm{~cm} / \mathrm{min} / \mathrm{sec}$
T 3. 34 min
S 6.150 mph
D 9. 25 ft
A $12.3 \mathrm{~km} / \mathrm{hr} / \mathrm{sec}$

## Solve each problem! Be sure to show your work!

13. Goldie Goldfish, a speed swimmer, loves to race around the park's pond, which is 0.5 miles around. If she can swim 20 laps around the track in 2 hours, what is her average speed?

$$
20 \times 0.5=10 \text { miles } \div 2 \text { hours }=5 \mathrm{mph}
$$

14. It takes Stu, a slimy slug, 20 minutes to travel from his favorite bush to the local trash can (a trip of 30 meters), how far can he travel in 1 hour ( 60 minutes)?
$\mathbf{3 0} \div \mathbf{2 0}=\mathbf{1 . 5} \mathbf{~ m} / \mathbf{m i n} \times \mathbf{6 0} \mathbf{m i n}=\mathbf{9 0} \mathrm{m}$
15. At exactly $2: 00 \mathrm{pm}$, Speedy the Snail crawls onto a meter stick at the 10 cm mark. If he reaches the 65 cm mark at exactly $2: 10 \mathrm{pm}$, what is his speed?
$65 \mathrm{~cm}-10 \mathrm{~cm}=55 \mathrm{~cm} \div 10 \mathrm{~min}=5.5 \mathrm{~cm} / \mathrm{min}$
16. If it takes Leaping Louie 5 minutes to jump 3 blocks, how long will it take for him to jump 15 blocks?

3 blocks $\div 5 \mathrm{~min}=0.6$ blocks $/ \mathrm{min} 15$ blocks $\div 0.6$ blocks $/ \mathrm{min}=25 \mathrm{~min}$
17. If Bert the Bat travels eastward at 40 mph with a tail wind of 6 mph , what is his actual speed?
$40 \mathrm{mph}+6 \mathrm{mph}=46 \mathrm{mph}$
18. Toon Train is traveling at the speed of $10 \mathrm{~m} / \mathrm{s}$ at the top of a hill. Five seconds later it reaches the bottom of the hill and is moving at $30 \mathrm{~m} / \mathrm{s}$. What is the rate of acceleration of Toon Train?
$30 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}=\mathbf{2 0} \mathrm{m} / \mathrm{s} \div 5 \mathrm{~s}=\mathbf{4} \mathrm{m} / \mathrm{s}^{2}$
19. Pete the Penguin loves to sled down his favorite hill. If he hits a speed of $50 \mathrm{~m} / \mathrm{s}$ after 5 seconds, what is his rate of acceleration? Hint: He starts at $0 \mathrm{~m} / \mathrm{s}$ at the top of the hill.
$\mathbf{5 0} \mathrm{m} / \mathrm{s} \mathbf{- 0} \mathrm{m} / \mathrm{s}=50 \mathrm{~m} / \mathrm{s} \div \mathbf{5} \mathrm{s}=10 \mathrm{~m} / \mathrm{s}^{2}$
20. Monster Mike's truck decelerates from $72 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 6 seconds. What is his rate of deceleration?
$0 \mathrm{~m} / \mathrm{s}-\mathbf{7 2} \mathrm{m} / \mathrm{s}=\mathbf{- 7 2} \mathrm{m} / \mathrm{s} \div \mathbf{6 s}=\mathbf{- 1 2} \mathrm{m} / \mathrm{s}^{2}$

