

Teaching Penetrative Thinking Via Progressive Alignment and Directed Sketching

Kristin M. Gagnier, Kinnari Atit, Carol Ormand & Thomas F. Shipley

Spatial Intelligence and Learning Center
Temple University

The inside is critical!

- Penetrative thinking (Kali & Orion, 1996) is challenging
- What cognitive challenges do students face?
- Teaching penetrative thinking using
 - Two teaching strategies that facilitate spatial reasoning
 - Spatial Analogy (Gentner et al. 1993, Christie & Gentner , 2010)
 - Sketching (Jee et al, 2009; Johnson & Reynolds, 2005)

Spatial Alignment

Comparison promotes learning by highlighting common relational structure

 Learning aided by high similarity comparisons progressing to low similarity comparisons (Kotovsky & Gentner, 1996)

Sketching

- Assisting in the building of a spatial representation (Ainsworth et al, 2011) and focusing attention on spatial relationships (Gorbet & Clement, 1999)
- Directed sketching influence spatial skills in engineering (Sorby, 2009; Mohler & Miller, 2008)
- Indicator of content knowledge (Jee et al., 2009; Matlen et al., 2012; Turner & Libarkin, in press)

Can Alignment & Sketching Improve PT?

 Sixty-two Psychology undergraduates Pre and Post GBST (Ormand et al, 2011)

- Viewed powerpoint of slices into block diagrams
- Experimental Condition (N=31): Three progressive slices and sketched the cross-section

Experimental Condition

Diagrams based work by Kali & Orion (1996) and diagrams by Steven Reynolds

- 1. Sketch Cross-section produced by Cut 1
- 2. Explain how you used layers visible on top, face and perpendicular side to predict cross-section

Compare your sketch with correct

Experimental Condition

Diagrams based work by Kali & Orion (1996) and diagrams by Steven Reynolds

- 1. Sketch Cross-section produced by Cut 1
- 2. Explain how you used layers visible on top, face and perpendicular side to predict cross-section

Compare your sketch with correct

Experimental Condition

Diagrams based work by Kali & Orion (1996) and diagrams by Steven Reynolds

- 1. Sketch Cross-section produced by Cut 1
- 2. Explain how you used layers visible on top, face and perpendicular side to predict cross-section

Compare your sketch with correct

Playdoh Model cut other way

Outline Drawing Version cut both ways

Control Condition

- Viewed same pictures
- Estimated amount of paint it would take to paint sides and explained why
- Sketched visible diagram

Prediction

If alignment and sketching facilitate PT

- Significant pre to post improvement in experimental condition
- Sketching performance predicts post test score

- •Significant improvement from pre to post, p<.01
- •Effect of condition, p<.05
- No interaction

Penetrative Choices (Kali & Orion, 1996)

Pick A or C: Recognize inside of 3D structure is consistent with top

- Improvement from pre to post, p<.01
- Effect of condition, p<.01
- Significant interaction, p<.01

Transfer to 3D Model?

Percent who choose dome?

- 40% in Experimental
- 22% in Control

Sketch Accuracy & Performance

- 1. Shape of layers in cross-section
- 2. Shape of layers on side and top
- 3. Coordination of Layers

Sketch Accuracy is out of 3

If students are learning through sketching then

First sketch does not predict post test or improvement

➤ <u>Last</u> sketch <u>does</u> predict post test score or improvement

Performance on Post Test

- First Sketch: r = .24, p=n.s.
- Last Sketch: r = .41, *p=.02*

Improvement from Pre test to Post Test

- First Sketch: r = .20, p=n.s.
- Last Sketch: r = .46, *p=.02*

Summary

- Spatial alignment and sketching improve penetrative thinking
- Transfer to a 3D model
- Quality of sketch predicted post test score and gains
- Data suggest that alignment and sketching facilitate penetrative thinking

Thank you!

Comments/Questions

Sketches that predict Post Test

First sketch: p=.78 Last sketch: p=.99

Difference Score

First sketch: p= .89 Last sketch: p=.75

What drove this effect?

CROSS-SECTION

SKETCH

CROSS-SECTION

SKETCH

CROSS-SECTION

