Complex Systems

Research on Learning Conference

Wingspread July 2002

Presenters:

Janice Gobert, Joel Michael and Richard Turetich

(Notes not on wall charts)

Barriers:

- lack of instructional and assessment resources for Earth Systems and other complex systems
- cognitive issues
 - -language for Earth Systems
 - -integration of many facets of domain
 - -misconception -content and epistemological
- instructor issues
 - -lack of faculty commitment and training from Earth Systems perspective
- nature of discipline
 - -representational issues –difficulty for students
 - -systems have no obvious starting point

Existing research

Relevant research on ...

- cognitive and education
 - -learning with models
 - -work on visual representations
 - -inquiry, collaboration, etc.

- learning environments
- sociological research
 - -group interactions
 - -faculty development
 - -instructional change in education
- disciplinary research on geoscience education

New Work Needed

- Models
 - -what are they good for?
 - -how to improve them?
 - -how to scaffold them?
- Assessment
 - -of learning environments
 - -of learning experiences
- Connections b/w parts of system
 - -feeback look in E.S.
 - -how do students work with feedback systems?
- Expert-Novices differences
 - -what do expert geologists think about this?

Next Steps

- Development of support community
- Institutional incentives
- Building bridges to other communities
- Developing geoscience professional who can teach E.S.

POSTERS:

Critical barriers to learning:

- 1. Compartmentalization [text books]
- 2. Learning the language
- 3. Presence of misconceptions
- 4. Conceptually difficult integration of may facets of domain (e.g. spatial, causal, dynamic, temporal)
- 5. Data representations
 - disembedding
 - coordinating
 - choosing right data
 - reasoning with
- 6. Lack of faculty commitment to learning (Earth system learning)
- 7. Lack of student motivation
- 8. Design of physical classroom
- 9. Today's faculty didn't learn geoscience themselves from an Earth Systems perspective
- 10. Faculty current experience (research) also may not have an Earth Systems perspective.
- 11. Lack of good materials for teaching of complex systems (textbooks, labs, problem sets, student projects, assessments (research)
- 12. Lack of assessment of instructional approaches e.g. longitudinal
- 13. You have to think about a lot of different things at the same time (e.g. multiple causes for the same observable)
- 14. Systems to learn are too complex
- 15. Systems are not linear
 - no starting point
 - need to know whole to understand parts
- 16. Misconceptions on the nature of knowledge they are learning and how they will learn it

Existing research

- 1. Misconceptions/conceptual change
- 2. Collaboration/cooperative/case-based/problem based learning/inquiry
- 3. Learning with models, visualizations, etc. (mtv.concord.org)
 - generating and manipulating models
 - resource model research
 - complexity theory research
 - how people read maps-Uttal
 - brain theory
- 4. Transfer of knowledge from macro to micro from physics/chemistry
- 5. Concept tests research [Mazur's Project Galileo]
- 6. Cognitive psychological research on understanding representations -e.g. Uttal, B Tversky, Hegonty, Tufte
- 7. Organizational change research (from academia, business) (Kottel)
- 8. Research on design of learning environments
- 9. Research on design of student projects/research
- 10. Research on novice/expert differences, expert/non-expert differences

Wide variety of relevant research

- -cognitive
- -education/learning/learning environments
- -sociological: group integration, faculty development, institutional change
- -disciplinary

New Work Needed (Complex systems)

- 1. Expert/novice differences
- 2. Transfer of geo/math to physics/chemistry

customizing??

- 3. Types of qualitative models necessary for learning in Earth Systems
 - for scientific literacy
 - for geology majors
- 4. Feedback loops (in Earth Systems)
 - How do students learn to recognize reinforcing and counteracting feedback loops
 - Having learned to recognize a feedback loop, how do they learn to use that information to reason about the natural system
- 5. Analogies
 - designing
 - when do they help? when do they mislead?
- 6. How do we help students make connections (e.g. across "spheres," across disciplines)
- 7. Usability studies. Complex, dynamic simulations
- 8. Knowledge of what knowledge, resources and skills students enter with
- 9. How modeling is taught and critical evaluation of the model and its outcomes
- 10. How to use model to teach about Earth
- 11. How do people understand causality?
- 12. Sequencing: Parts first or system?
- 13. Assessment instruments
 - Content
 - Inquiry skills
 - Epistemological gains
 - application to real world
- 14. Scaffolding –what works for complex systems and for learning with models
- 15. What are the paradigmatic models at different levels of instruction?
- 16. How to prepare teachers to teach complex models

SUMMARY

■ Models (14,15,16,9,10)

What are they good for?

How can we make them good?

■Assessment (8,13)

of the learning environment

of the learning experience

 \square Connections (4,6,2,11)

Next Steps: for research and all communities

- 1. Informing geo faculty (faculty development)
- 2. Building community
- 3. More and deeper collaborations with learning scientists (this research feeds back into 1 &2)
- 4. Building institutional support for instructional change. Professional rewards
- 5. Mobilizing faculty and professional societies to facilitate "reform" and publications
- 6. Reforming culture, building bridges between education and phys. geo with research, chemistry, math, engineering, biology

Establish ethic of helping each other understand and share experience and understanding

- 7. Establish/re-establish programs (e.g. PFSMET, K12) which encourage education and geoscience interactions (collaborations)
- 8. Use existing resources (JGE,EOS,Geotimes, Geology)
- 9. Statement on geoscience education research (analogous to physics education research) (AGU)
- 10. Develop interactions with biology educators regarding complex systems
- 11. Concept maps
- 12. EMBED research into all next steps