Geology 633 Metamorphism and Lithosphere Evolution

Thermodynamic calculation of mineral reactions I: Reactions involving pure phases

The formulation for the free energy change of any reaction *involving pure phases* (which is why we use the 'o') at elevated P and T is calculated as follows:

$$\Delta_r G^{\circ}_{P} T = \Delta_r H^{\circ}_{P} T - T \Delta_r S^{\circ}_{P} T$$

where ' Δ_r ' is the change in $G^{\circ}_{P, T}$, $H^{\circ}_{P, T}$ and $S^{\circ}_{P, T}$ in the reaction.

At equilibrium:

$$\Delta_{r}G^{\circ}_{P,T} = \Delta_{r}H^{\circ}_{P,T} - T \Delta_{r}S^{\circ}_{P,T} = 0$$

thus

$$\begin{split} \Delta_r G^\circ{}_{P,\,T} &= 0 \quad = [\; \Delta_r H^\circ{}_{1,\,298} \, + \, _{298} \!\!\int^T (\partial \Delta_r H^\circ \!/ \! \partial T)_P \, dT \, + \, _1 \!\!\int^P (\partial \Delta_r H^\circ \!/ \! \partial P)_T \, dP] \\ &\quad - \, T \; [\Delta_r S^\circ{}_{1,298} + \, _{298} \!\!\int^T (\partial \Delta_r S^\circ \!/ \! \partial T)_P \, dT \, + \, _1 \!\!\int^P (\partial \Delta_r S^\circ \!/ \! \partial P)_T \, dP \;] \end{split}$$

we will assume that the variation of S with pressure is negligible (ie, ${}_{1}\int^{P} (\partial \Delta_{r}S^{\circ}/\partial P)_{T} dP = 0$), and substitute in expressions for the other variation terms:

$$\begin{split} &= [\ \Delta_r H^{\circ}{}_{1,\ 298}\ + {}_{298} \!\!\int^T \Delta_r C_p \ dT + {}_{1} \!\!\int^P \Delta_r V^{\circ} \ dP] \\ &\quad - T \ [\Delta_r S^{\circ}{}_{1,298} + {}_{298} \!\!\int^T \Delta_r C_p / T \ dT \] \end{split}$$

1. Solids-only reactions

If we are dealing with a solids-only reaction, we will assume that the molar volume of crystalline solids (minerals) does not change significantly with P and T (ie, $\alpha \approx \beta \approx 0$), so that $_1 \int^P \Delta_r V \ dP = \Delta_r V^\circ_s \ (P-1)$. (By adding the subscript 's' to $\Delta_r V^\circ_s$, we remind ourselves that this approximation only holds for solid phases, not fluids). Note that in this expression, pressure units are in bars.

$$\begin{split} &= \left[\ \Delta_r H^{\circ}{}_{1,\,298} \ + {}_{298} \! \int^T \Delta_r C_p \ dT + \Delta_r V^{\circ}{}_{s\,1,\,298} \left(P-1\right) \right] \\ &- T \left[\Delta_r S^{\circ}{}_{1,298} + {}_{298} \! \int^T \Delta_r C_p / T \ dT \ \right] \end{split}$$

To complete the formulation, we need to know the formula for $\Delta_r C_p$, the heat capacity expression. Heat capacity in general is a complex function of T, such as:

$$C_p = a + bT + cT^2 + dT^{-0.5} + eT^{-2}$$

or, for the reaction:

$$\Delta_r C_p = \Delta_r a + \Delta_r bT + \Delta_r cT^2 + \Delta_r dT^{-0.5} + \Delta_r eT^{-2}$$

This expression is substituted in the two places in the above formula for ' $\Delta_r C_p$ '. The expression must then be broken into its parts, integrated and solved between the limits of 298K and T, similar to what you did in Glgy 429. Note that we are concerned with $\Delta_r C_p$, so that each term in the general expression below (a, b, c, etc.) has to be calculated for the reaction (ie, $\Delta_r a$, $\Delta_r b$, $\Delta_r c$, etc.).

Simplifications for first order analysis of a solids-only reaction involving pure phases

For a solids-only *reaction*, it turns out that the **change** in the heat capacities between reactants and products going from 1, 298 to P,T is usually small. So, for **first order analysis** of a solids-only reaction, we can make the assumption that $\Delta_r C_p = 0$. Note that this is NOT the same as saying that the enthalpy and entropy of an individual phase involved in the reaction does not change with T – they do! It is just that the changes between the reactant phases and product phases is often about the same, which algebraically is the same as setting $\Delta_r C_p = 0$.

Thus, the above equation simplifies considerably to:

$$\begin{split} \Delta_r G^\circ_{P,\,T} &= \Delta_r H^\circ_{P,\,T} - T \, \Delta_r S^\circ_{P,\,T} = 0 \text{ at equilibrium} \\ &= \Delta_r H^\circ_{1,\,298} + \Delta_r V^\circ_{s\,1,\,298} \, \left(P-1\right) \, - T \, \Delta_r S^\circ_{1,298} \end{split}$$

Note that this simplified formula is used for first-order calculations only. With the widespread use of computers, it is not that complicated to code in the full expressions and these will provide more accurate results.

Finally, to obtain two extremely useful relations in determining the general slope of a reaction, recall the Gibbs-Helmholtz relation:

$$dG = -SdT + VdP$$

which when compared to the total differential of G:

$$dG = (\partial G/\partial T)_P dT + (\partial G/\partial P)_T dP$$

gives the following two key relations:

$$(\partial G/\partial T)_P = -S$$
 (or, for a reaction: $(\partial \Delta_r G^{\circ}_{P,T}/\partial T)_P = -\Delta_r S^{\circ}_{P,T}$)
 $(\partial G/\partial P)_T = V$ (or, for a reaction: $(\partial \Delta_r G^{\circ}_{P,T}/\partial P)_T = \Delta_r V^{\circ}_{P,T}$)

In using these expressions for solids-only reactions, it is usually sufficient to assume that:

$$\Delta_r V^{\circ}_{sP,T} = \Delta_r V^{\circ}_{s1,298}$$
 and $\Delta_r S^{\circ}_{P,T} = \Delta_r S^{\circ}_{1,298}$

finally, to calculate the slope of a reaction (meaning, at equilibrium where dG = 0):

$$(\partial P/\partial T)_{P,T} = \Delta_r S^{\circ}_{P,T} / \Delta_r V^{\circ}_{P,T}$$

but for our assumptions about S and V in solids, this end up being:

$$(\partial P/\partial T)_{P,T} \sim (\partial P/\partial T)_{1,298} = \Delta_r S^{\circ}_{1,298} / \Delta_r V^{\circ}_{1,298}$$

Data

Below are thermochemical data for each of the minerals from Robie et al. (1978). In Robie's tabulation, variation of heat capacity with temperature may be expressed by the equation:

$$C_p = a + bT + cT^2 + dT^{-0.5} + eT^{-2}$$

Parameter	Units	Anorthite	Quartz	Grossular	Wollastonite
$V^{\circ}_{(1,298)}$ $\Delta_{f}H^{\circ}_{(1,298)}$ $S^{\circ}_{(1,298)}$ C_{p} constants:	cm ³ mol ⁻¹ kJ mol ⁻¹ J K ⁻¹ mol ⁻¹	100.79 -4243.04 199.3	22.688 -910.70 41.46	125.30 -6656.70 255.5	39.93 -1635.22 82.01
a b				1529.3 -0.69900	111.25 1.4373 x 10 ⁻²
c d		$4.1883 \times 10^{-5} $ $- 4.5885 \times 10^{3}$	0		
e		-1.4085×10^6	-1.0018×10^6	7.4426×10^6	-2.7779×10^6

Exercise

- 1. Balance a reaction between the pure, solid phases grossular (Grs $Ca_3Al_2Si_3O_{12}$), wollastonite (Wo- $CaSiO_3$), quartz (Qtz SiO_2) and anorthite (An $CaAl_2Si_2O_8$). (You must do this right, or the rest of the exercise will fail!)
- 2. Let's do some first order analysis using the heat capacity simplifications to get a feel for the approximate slope and position of the reaction. Answer the following questions:
- (a) Which assemblage is more stable at 1 bar, 298K?
- (b) Which assemblage is favoured by increasing pressure?

- (c) Which assemblage is favoured by increasing temperature?
- (d) What is the slope of the reaction?
- (e) At P = 1 bar, what is the equilibrium temperature of the reaction?
- (f) Based on all of the above, plot on some graph paper the position of the reaction, correctly labelled (ie, reactant and product phases placed on the correct side of the reaction). (Don't make your plot go above 10 kbar)
- 3. Now let's be more rigorous. Using the full expression for $\Delta_r G^{\circ}_{P, T}$, calculate and plot the P-T position of the reaction using Excel (again, don't go above 10 kbar). For temperature, don't extrapolate beyond the limits of applicability of the heat capacity equations, which is 300 –1800 K.
- 4. By plotting the equilibrium curves on one chart/graph, how do the two curves compare? In this case, is the heat capacity simplification justified?
- 5. You will now use above results (recognizing that what you have calculated is a *thermodynamic model* of the real reaction) to make some interesting geological inferences.
- (a) For a temperature of 950 K (a temperature typically found for this assemblage), estimate the depth in the earth at which the full assemblage involved in the reaction would be found (ie, where the equilibrium occurs). Use the curve obtained in (3) to get your pressure. Assume an average rock density of 2.6 g cm⁻³. (Recall that $P = \rho gh$).
- (b) What would be the average geothermal gradient, in K (or °C) km⁻¹? How does this compare to the earth's average geothermal gradient? What sort of geological setting might provide the temperature conditions necessary for the formation of this assemblage at this depth?

2. Thermodynamic calculations of reactions with fluids

Recall from above that, at equilibrium:

$$\begin{split} \Delta_r G^\circ{}_{P,\,T} &= 0 &= [\; \Delta_r H^\circ{}_{1,\,298} \, + \,_{298} \!\!\int^T (\partial \Delta_r H^\circ \!/ \! \partial T)_P \, dT \, + \,_1 \!\!\int^P (\partial \Delta_r H^\circ \!/ \! \partial P)_T \, dP] \\ &- T \; [\Delta_r S^\circ{}_{1,298} \, + \,_{298} \!\!\int^T (\partial \Delta_r S^\circ \!/ \! \partial T)_P \, dT \, + \,_1 \!\!\int^P (\partial \Delta_r S^\circ \!/ \! \partial P)_T \, dP \,] \\ &= [\; \Delta_r H^\circ{}_{1,\,298} \, + \,_{298} \!\!\int^T \Delta_r C_p \, dT \, + \,_1 \!\!\int^P (\partial \Delta_r H^\circ \!/ \! \partial P)_T \, dP] \\ &- T \; [\Delta_r S^\circ{}_{1,298} \, + \,_{298} \!\!\int^T \Delta_r C_p \!/ T \, dT \,] \end{split}$$

Whereas we assumed, for *solids-only reactions*, that:

$$_{1}\int^{P} (\partial \Delta_{r} H^{\circ} / \partial P)_{T} dP] = _{1}\int^{P} \Delta_{r} V_{s}^{\circ} dP = \Delta_{r} V_{s}^{\circ} _{1.298} (P-1)$$

we cannot do this for fluids because they are so compressible.

Instead, for fluids, we must use the expression:

$$_{1}\int^{P} V_{f} \circ dP = RT \ln f \circ _{1}^{P} |_{1}$$
 (using bars as units of P and f)

in which f stands for fugacity of a gas, and f° stands for fugacity of a pure gas.

Because the properties of gases at a pressure of 1 bar (any T) are close to those of an ideal gas, the fugacity of a gas at a pressure of 1 bar (any T) is assumed to equal to 1 bar (ie, the fugacity coefficient is 1). Thus:

$$RT \ln f^{\circ P} \Big|_{1} = RT \ln f^{\circ}_{P} - RT \ln f^{\circ}_{1 \text{ bar}} = RT \ln (f^{\circ}_{P}/f^{\circ}_{1 \text{ bar}}) = RT (\ln f^{\circ}_{P}/1)$$
$$= RT \ln f^{\circ}_{P}$$

Because the degree of non-ideality, and thus the fugacity, of gases depends on P as well as T, the general expression becomes:

$$= RT \ln f^{\circ}_{P,T}$$

where $f^{\circ}_{P,T}$ stands for the fugacity of a pure fluid at any P and T. If you do a units check for the above term, you might conclude that the units are J-bar, rather than J as we want! The reason is that in evaluating the integral between P and 1 bar, units of P ($f^{\circ}_{P,T}$) are divided by units of P ($f^{\circ}_{1 \text{ bar},T}$) (look inside the natural log term), such that the P units cancel. Thus, you must be aware that the term RTln $f^{\circ}_{P,T}$ as written implies division by a P term whose value is 1 bar, such that the units do ultimately work out to be in J.

Values of $f^{\circ}_{P,T}$ are obtained directly from tables, or can be calculated from:

$$f^{\circ}_{P,T} = \Gamma_{P,T} P$$

where $\Gamma_{P,T}$ is the fugacity coefficient. You can think of the fugacity coefficient as a term that accounts for the non-ideal-gas behaviour of a real gas. Values of Γ can be calculated or obtained from tables. In this lab, values of $\Gamma_{P,T}$ are provided for you.

** Note that for an ideal gas,
$$f \circ_{P,T} = P$$
. **

Calculation of an equilibrium involving fluids at elevated P and T

For a reaction involving solids and fluids, in order to calculate:

$$_{1}\int^{P}\left(\partial\Delta_{r}H^{\circ}/\partial P\right)_{T}dP = _{1}\int^{P}\Delta_{r}V^{\circ}dP$$

we separate the solids from the fluids as follows:

$$_{1}\int^{P} \Delta_{r} V^{\circ} dP = \Delta_{r} V^{\circ}_{s \ 1, \ 298} (P - 1) + or - _{1}\int^{P} V_{f}^{\circ} dP$$

The '+ or-' refers to the fact that if the fluid is a *reactant* in the reaction, one *subtracts* the fluid term, whereas if the fluid is a *product*, one *adds* the term.

Because $_1\int^P V_f^{\circ} dP = RT \ln f^{\circ}_{P,T}$ (see above), this results in:

$$_{1}\int^{P} \Delta_{r} V^{\circ} dP = \Delta_{r} V^{\circ}_{s \ 1, \ 298} (P - 1) + or - RT \ln f^{\circ}_{P,T}$$

Substituting into the full free energy equation:

$$\begin{split} \Delta_r G^\circ_{P,\,T} &= \Delta_r H^\circ_{P,\,T} - T \, \Delta_r S^\circ_{P,\,T} = 0 \, \, \textit{at equilibrium} \\ \Delta_r G^\circ_{P,\,T} &= \left[\, \Delta_r H^\circ_{1,\,298} + {}_{298} \int^T \Delta_r C_p \, dT + \Delta_r V^\circ_{s\,1,\,298} \, (P-1) \, + \textit{or-} \, RT \, \ln f^\circ_{P,T} \right] \\ &- T \, \left[\Delta_r S^\circ_{1,298} + {}_{298} \int^T \Delta_r C_p / T \, dT \, \right] = 0 \, \, \textit{at equilibrium} \end{split}$$

Note: despite having made a big deal about how fluids are special when it comes to their variation with pressure, fluid phases are treated *like any other phase* when calculating the change in the reaction (Δ_r) of heat capacity, entropy, and enthalpy in the above equations.

If we assume that the **change** in the heat capacities between reactants and products going from 1, 298 to P,T is negligible, the above equation simplifies considerably to:

$$\Delta_r G^{\circ}_{P,T} = \Delta_r H^{\circ}_{1,298} - T \Delta_r S^{\circ}_{1,298} + \Delta_r V^{\circ}_{s,1,298} (P-1) + or- RT \ln f^{\circ}_{P,T} = 0$$

Exercise

1. Using the ideal gas law for one mole, PV = RT, calculate the volume of pure H_2O at:

200 °C, 1 bar 200 °C, 1 kbar 400 °C, 1 kbar

The specific volumes of water measured experimentally in cc/g are:

200 °C, 1 bar 2171 200 °C, 1 kbar 1.0811 400 °C, 1 kbar 1.442 Comment on how the values based on the ideal gas law compare with those measured experimentally.

2. You will recall from Glgy 311 that a crucial reaction in metapelites is where muscovite and quartz are no longer stable together, reacting to form $Al_2SiO_5 + K$ -feldspar + hydrous fluid (you may wish to refer to your petrogenetic grid from Glgy 311). This is a type of *devolatilization reaction* (it involves release of a fluid phase). Because the fluid is water, it is more specifically a *dehydration reaction*.

Devolatilization reactions are the most common sort of metamorphic reaction. Thus, the results you obtain for the Ms+Qtz reaction will be useful in illustrating a number of features that are common to all devolatilization reactions.

Note that what you will be calculating is a *thermodynamic model* of the reaction in a simplified chemical system, rather than an actual reaction such as one might infer from the change in mineralogy and texture going across an isograd in the field. It turns out that for this reaction, the thermodynamic model is likely a very good approximation to the reaction that occur in rocks.

- a. Assuming that sillimanite is the stable form of Al₂SiO₅, write a balanced chemical reaction between these phases (first find the chemical formulae for the phases!).
- b. Using the thermodynamic data from Philpotts (appended to the back of this lab), assuming that $\Delta_r C_p = 0$ and $\Delta_r V_s^{\circ}_{(P, T)} = \Delta_r V_{s 1, 298}^{\circ}$, and assuming that the *water behaves* as an ideal gas (ie, $f_{H2OP,T}^{\circ} = P$), calculate the equilibrium pressures for 300, 350, 400, 450, 500, 550, 600, 650 and 700 °C. Plot the values on a graph (either by hand or using Excel).

Note: the calculation of P in parts b. and d. have to be done by a trial and error method. This will be speeded up if you have the formulae in the spreadsheet, thereby allowing for rapid calculations for each new P you try.

- c. Can you rationalize the shape of the slope of the reaction? (Hint: what two thermodynamic parameters are divided to obtain the slope of a reaction? How does each vary with P and T? note that one of the reaction products is a gas!)
- d. Repeat part b. for the same set of temperatures, only treat the water as the real gas that it is (ie, use fugacity of water rather than pressure of an ideal gas). To save time, here are the values for the fugacity coefficients that you should use (these are the values for the final P conditions of the equilibrium for each temperature):

T °C	$\Gamma_{P,T}$
300	1
350	0.95
400	0.95

450	0.9
500	0.7
550	0.52
600	0.52
650	0.73
700	1.08

e. Plot the results of b. and d. on the same graph, and comment on the difference between the results.

TABLE 7-1

Thermodynamic data for common minerals at 298.15 K and 10⁵ Pa (1 bar)

										¥		Transition	
		Formula	Volume					C°, Coefficients			ΔV°		
Name	Formula	Weight (kg)	(m³ mol-1 × 10³)	S° (J mol ⁻¹ K ⁻¹)	ΔH_f^c (kJ mol ⁻¹)	ΔG° _f (kJ mol ⁻¹)	a (J mol ⁻¹ K ⁻¹)	$b \times 10^3$ (J mol ⁻¹ K ⁻²)	$c \times 10^{-s}$ (JK mol ⁻¹)	Temperature Range (K)	$(m^3 mol^{-1} \times 10^3)$	ΔS° (J mol ⁻¹ K ⁻¹)	ΔH° (J mol ⁻¹)
Akermanite	Ca ₂ MgSi ₂ O ₇	.27264	.09281	209.33	-3878.304	-3681.092	251.42	47.70	47.70				
Albite	NaAlSi ₃ O ₈	.262224	.10025	207.15	-3931.621	-3708.313	258.15	58.16	62.80	298-473			
Analcite	NaAlSi,O,·H,O	.220155	.0971	234.30	-3306.168	-3088.202	223.80	101.00	209.84 37 15	473-1200			
Andalusite	Al ₂ SiO ₅	.162046	.05153	92.88	-2576.783	-2429.176	172.84	26.33	51.85				
Andradite	Ca ₃ Fe ₂ Si ₃ O ₁₂	.505184	.13185	293.42	-5778.125	-5428.652	475.02	65.42	129.24				
Annite	KFe ₃ (AlSi ₃ O ₁₀)(OH) ₂	.51189	.15432	398.32	-5155.504	-4799.701	445.30	124.56	80.79				
Anorthite	Ma Si O (OH)	.27821	.10079	205.43	-4216.518	-3992.783	264.89	61.90	64.60				
Children of the Control of the Contr	111970180221011)2	.,000,1	1	0000	- 12000.520	-11301.339	826.52	174.11	55.82	903-1258			
							834.80	174.11	55.82	1258-1800			
Citigoria	W19483134085(OFI)62	4.530255	1./4313	3003.93	- /1424.608	- 66140./56	5166.53	2097.19	1176.88	298-848 848-1000			
Aragonite	CaCO ₃	.100089	.03415	90.21	-1208.017	-1129.157	84.22	42.84	13.97				
Calcite	CaCO,	.058327	.02463	63.14 · 92.68	-926.296 -1208.222	-835.319 -1130.098	101.13	16.79 21 92	25.56				
Carbon dioxide	CO ₂	.04401	24.465	213.69	-393.522	-394.392	44.22	8.79	8.62				
Chalcedony	SiO ₂	.060085	.022688	41.34	-909.108	-854.691	46.94	34.31	11.30				
Clinochlore 14-A	Mg.AI(AISi.O.,)(OH),	.555832	.20711	465.26	-8857.377	-8207.765	696.64	176 15	156 77				
Clinochlore 7-A	Mg ₅ Al(AlSi ₃ O ₁₀)(OH) ₈	.555832	.2115	445.60	-8841.616	-8188.511	681.24	211.79	171.04	298-848			
Clinozoisite	Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)	.622882	.1362	295.56	-6879.421	-6483.861	694.59 444.00	185.60 105.50	159.75 113.57	848-900			
a coesile	SiO ₂	.060085	.020641	40.38	-906.313	-851.616	46.02	34.31	11.30	298-848			
B							59.37	8.12	.0	848-2000			
Cordierite (hydr.)	Mg-Al (AlSi ₅ O ₁₈)	.584969	23322	407.23	-9134.505	-8624.391	601.78	107.95	161.50				
Corundum	Al ₂ O ₃	.101961	.025575	50.96	-1661.655	-1568.264	115.02	11.80	35.06				
Cristobalite	SiO ₂	.060085	.02738	50.05	-902.384	850.565	72.76	1.30	41.38				
Diopside	CaMg(SiO ₃) ₂	.21656	.06609	143.09	-3203.262	-3029.216	220.92	32.80	65.86				
Enstatite	Calvig(CO ₃) ₂	.104411	.004300	155.18	-2329.865	-2167.228	1/3.8/	100.22	41.35				
Clino	MgSiO ₃	.100396	.031276	67.78	-1546.766	-1459.923	102.72	19.83	26.28	298-903	.00002	.770	695
Proto							120.35 122.42	3 [:] 8	3 [.] 8	903-1258	.00109	1.297	1632
Epidote	Ca ₂ FeAl ₂ Si ₃ O ₁₂ (OH)	.651747	.1392	314.97	-6461.903	-6072.432	492.13	53.62	133.32				
Fayalite	Fe ₂ SiO ₄	.203778	.04639	148.32	-1481.634	-1381.695	152.76	39.16	28.03				
Clino	FeSiO ₃	.131931	.032952	94.56	-1195.055	-1117.797	110.83	21.21	23.22	298-413	.000056	377	155
Ortho	No.	140700	04270	07.10	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	2056	87.86	37.66	? ? ? 8	413-1400			
Gehlenite	Ca,AI,SiO,	274205	.09024	201 25	- 3981 766	- 3780 612	266.69	33 47	35.65				
Graphite	C	.012011	.0052982	5.74	0	0	16.86	4.77	8.54				
Grossularite	Ca ₃ Al ₂ Si ₃ O ₁₂	.450454	.1253	254.68	-6624.933	-6263.310 l	435.21	71.18	114.30				

į.	5	. 1978)	om Robie et al	or silica glass fr OK).	cience. Data foom 298 to 150	in Journal of So (T^{-2})	on of America (3.1140 × 10	by permissi $10^{-6}T^2$) —	(Modified from Helgeson et al. 1978. Reprinted by permission of American Journal of Science. Data for silica glass from Robie et al. 1978) $*C_0^a = 74.639 - (7.2594 \times 10^{-3}T) + (5.5704 \times 10^{-6}T^2) - (3.1140 \times 10^6T^{-2})$ (valid from 298 to 1500 K).	(Modified from Fig. $C_0^0 = 74.639 - 10^{-10}$
	113.57	105.50	444.00	-6483.606	-6879.044	295.98	.1359	.622882	Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)	Zoisite
	27.28	15.06	111.46	-1545.758	-1630.965	82.01	.03993	.116164	CaSiO ₃	Wollastonite
	68.74	186.06	420.07	-6182.496	-6608.850	439.74	.18687	.434411	CaAl ₂ Si ₄ O ₁₂ ·2H ₂ O	Wairakite
	187.54	239.72	787.52	-11592.546	-12319.696	548.90	.27292	.81241	Ca ₂ Mg ₅ Si ₈ O ₂₂ (OH) ₂	Tremolite
	55.81	174.10	345.10	-5523.667	-5903.289	260.83	.13625	.379289	Mg ₃ Si ₄ O ₁₀ (OH) ₂	Talc
	3.77	.67	36.48	79.329	128.365	228.07	24.465	.064128	S ₂	Sulfur
	.00	10.29	30.54	-228.589	-241.818	188.72	24.465	.0180153	н ₂ О	Steam
	40.62	26.84	153.86		-2288.008	80.63	.03971	.142273	MgAl ₂ O ₄	Spinel
	48.84	30.92	167.46		-2573.574	96.78	.0499	.162046	Al ₂ SiO ₅	Sillimanite

-1545.758	1630.965	82.01	.03993	16164
-6182.496	-6608.850	439.74	.18687	34411
-11592.546	-12319.696	548.90	.27292	1241
-5523.667	-5903.289	260.83	.13625	79289
79.329	128.365	228.07	24.465	64128
-228.589	-241.818	188.72	24.465	180153
-2163.153	-2288.008	80.63	.03971	42273
-2427.101	-2573.574	96.78	.0499	62046

Phlogopite Prehnite

Ca2AI(AISi3O10)(OH)2 KMg₃(AlSi₃O₁₀)(OH)₂

Periclase Pargasite Paragonite Nepheline

MgO

 $NaAl_2(AlSi_3O_{10})(OH)_2$ $NaCa_2Mg_4Al(Al_2Si_6O_{22})(OH)_2$

NaAlSiO₄ CaMgSiO₄ KAISi30, Ca₃Mg(SiO₄)₂

145227

.14071

110.46

-2262.707

-3746.245

4339.586 -50.739

.2735 .13253 .05516 .05147 .108741

669.44

-12623.396-6226.072 -6201.060

-11912.551

-569.384

-5548.034-1978.496-2145.677

-601.659

-5928.573

-2093.008

-5972.275 -3971.403 -4566.652 -74.810 -6217.520

5591.083

110.37

27.02 22.34 53.97 47.86 50.04 94.60 68.41

210.08

6.19

110.62 106.44

30.66

71.34 33.47 60.42

1.92

26.94

277.82 124.35 287.86 213.93 253.13 186.15

KAl₂(AlSi₃O₁₀)(OH)₂

Microcline (max.) Methane Merwinite

Muscovite Monticellite

Quartz Pyroxene Ca-Al Pyrophyllite

SiO2

Al₂Si₄O₁₀(OH)₂ CaAl₂SiO₆

.360316

.218125

146.44 239.32

3280.310 -5628.790

> 332.34 423.30 42.59 420.95 383.25 861.07 407.65 150.24 408.19 154.05 267.06 305.31 23.64 428.86 415.51 91.55 200.83

164.07 26.86 158.24 120.42 174.31 102.51

89.96 82.01 48.12 72.31

298-848 848-1000

-910.648

-856.2393105.729 5255.09

46.94

060085

.417286 .835858 .382201 .398313 .156476 .278337

.14966 .011248

318.40 271.96

-5818.007-5841.646

.412389 .040311 Magnetite Magnesite

Fe₃O₄ MgCO₃

Margarite

CaAl₂(Al₂Si₂O₁₀)(OH)₂

.016043

24.465

328719 398187 Kalsilite K-feldspar

KAISIO.

Jadeite Hydrogen sulfide Hydrogen

NaAl(SiO₃)₂

.20214

.0604

-3971.403-3021.333

-3746.245

320.57 201.50

125.29

49.66

123.14 177.82

.0

298-810 810-1800

.828

669

2842,798

-33.539

32.68 27.28

12.38

132.67 150.62

14.85 .00 .00 -.50 1.92

298-950 950-1050 1050-1800

.703

669

0 -- 20.627

-2131.363

.0340799 .002016

24.465 24.465

KAISi308

Kyanite Kaolinite

awsonite aumontite

> CaAl2Si4012.4H2O Al2Si2O5(OH)4

CaAl₂Si₂O₇(OH)₂·H₂O

.3142

.470441 .162046

.20755 .04409 .09952 .05989

233.47 485.76 203.05 133.26 213.93 133.47 130.57 205.69

83.68

-7233.651

-6682.028 -2430.720

186.06 122.17

4492.060

355.60 342.25 515.47 173.19 304.47

71.55

56.74 68.03 68.74 22.26 .00 90.04 53.90

19.87

82.55

201.67

128.66 117.36

848-1000

298-900 900-1800 298-848

.00

0

4846.428

-2581.097

4109.613

3789.089 2015.642

.258161

158167 278337

.084321

028018

.231539

145.73

-1118.174-1111.396

1294 044524

266.94

-5834.044-1014.930-1027.833 Hedenbergite

Fe₂O₃ CaFe(SiO₃)₂

.159692 .248106

030274

87.61

-827.260

-745.401

.06827

170.29

-2838.827

-2674.488

229.33

62.80

Silica glass

Silica (amorphous) Sanidine (high)

SiO2·nH2O

Mg₄Si₆O₁₅(OH)₂(OH₂)₂·(OH₂)₄

.647861

060085

.060085

.277337

.109008 .022688

228.15

613.37

10116.912

-9251.627 -850.559-848.900

> 660.74 60.29 267.06

436.39

53.97

11.30 .00 71.34 78.16 94.98

8.12

298-848 848-2000

.000372

1.431

1213

24.81

3739.400

-897.753

3960.315

KAISi₃O₈

Sepiolite