Nano-Geoscience Capabilities using Synchrotron Radiation

John Bargar
Stanford Synchrotron Radiation Lightsource
NNCI Nanoscience Earth and Environmental Science Research
Community Virtual Workshop

May 25, 2021

Electromagnetic Radiation - How It Relates to the World We Know

Electromagnetic Radiation - How It Relates to the World We Know

What Makes Synchrotron Radiation (SR) so Useful?

Wide energy spectrum:

SR is emitted with a wide range of energies

High brightness:

SR is extremely intense (hundreds of thousands of times higher than conventional x-ray tubes)

Highly polarized and short pulses:

SR is emitted in very short pulses, typically less that a nano-second (a billionth of a second)

SR offers many characteristics of visible lasers but into the x-ray regime!

Synchrotron methods for nanoparticle studies

- High-resolution X-ray powder diffraction (SR-PD)
- Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy
- High-energy X-ray total scattering & PDF analysis (X-PDF)
- Small-angle X-ray scattering (SAXS)

Synchrotron methods for nanoparticle studies

- High-resolution X-ray powder diffraction (SR-PD)
- Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy
- High-energy X-ray total scattering & PDF analysis (X-PDF)
- Small-angle X-ray scattering (SAXS)

Example

What is the structure of biogenic nano-uraninite?

Hypothesis: Will be nonstoichiometric, nano-sized & highly defected due strain

Powder Diffraction Biogenic UO₂ nanoparticles

- Particle size from peak broadening
- Lattice parameter showed that there was very little strain!
- Unit cell: stoichiometric UO_{2.0}
- Other useful information:
 - Atomic positions

 Missing peaks provides information on (very small) particle size

- Structural coherence length of 1.2 Å
- Smaller than XRD
- What can we learn from this?

Combining SR-PD & EXAFS spectroscopy: Biogenic UO₂ nanoparticles

- XRD: Diffracting crystal size
- EXAFS: far more sensitive to disorder – gives diameter of highly ordered portion of nanoparticles

Green = Oxygen; Red = Uranium

Example

What is the structure of ferrihydrite?

High Energy X-ray Scattering – PDF Analysis

F. M. Michel *Science* **316** (5832), pp. 1726, 2007

High Energy X-ray Scattering – PDF Analysis

Thank you!

Powder Diffraction

B02

P103

Pre-Incubation

10

 $q(\mathring{A}^{-1})$

12

14

- No accumulation of UO_{2+X} or U(VI) solids.
- EXAFS: Local structural order similar before/after

- Diffraction: no change in material, particle size.
- No UO_{2+x}, calcite, other phases.
- No oxidation products