Chemistry and the Earth

Martin F. Schmidt, Jr.

How were the elements made?

How stars make elements.

http://www.valdosta.edu/~cbarnbau/astro demos/stellar evol/home stellar.html Low mass - do #3 first, then #2

High mass - to supernova

How elements come together to make sun & solar system.

http://www.valdosta.edu/~cbarnbau/astro demos/stellar evol/home stellar.html #1 star forms - good for solar system formation

Parts of the Earth system are generally arranged in

In what form do we find the elements?

- ► <u>Minerals</u> are naturally-occurring crystalline solids, composed of one or more elements in a specific ratio, formed by inorganic processes. Briefly, they are naturally occurring chemical compounds.
- ► <u>Rocks</u> are a natural aggregate of one or more minerals, or any essential or appreciable part of the solid Earth.

Mineral compositions

```
How would you generalize this?
quartz .....SiO<sub>2</sub>
feldspars: K-feldspar.....KAISi<sub>3</sub>O<sub>8</sub>
                 plagioclase.....(Na,Ca)Al(Al,Si)Si<sub>2</sub>O<sub>8</sub>
mafics: amphibole.....Ca<sub>2</sub>(Mg<sub>4</sub>Al)(Si<sub>7</sub>Al)O<sub>22</sub>(OH)<sub>2</sub>
            pyroxene.....Ca(Mg,Fe,Al)(Al,Si)<sub>2</sub>O<sub>6</sub>
            olivine.....(Mg,Fe)_2(SiO_4)
micas: muscovite.....KAI<sub>2</sub>(Si<sub>3</sub>AI)O<sub>10</sub>(OH)<sub>2</sub>
           biotite......K(MgFe)<sub>3</sub>(Al,Fe)Si<sub>3</sub>O<sub>10</sub>(OH,F)<sub>2</sub>
calcite......CaCO<sub>3</sub>
```

Mineral compositions

How would you generalize this?

quartz		
feldspars: K-feldspar	Most are silicates = silicon + oxygen	
plagioclase		
mafics: amphibole	Plus a metal like Na, Ca, K, Mg, Fe, Al	
pyroxene		
olivine		
micas: muscovite	Or a carbonate >	
biotite		
calciteC	aCO ₃	

Element abundance in Earth's crust – 8 most abundant

Element	Weight %	Atom %	Volume %
0	46.6%	62.6%	93.8%
Si	27.7	21.2	0.9
	8.1	6.5	0.5
	5.0	1.9	0.4
	3.6	1.9	1.0
	2.8	2.6	1.3
	2.6	1.4	1.8
	<u>2.1</u>	1.8	0.3
Totals for 8	98.5%	99.9%	100.0%

https://www.webelements.com/periodicity/abundance_crust/

Relative volumes of Si and O in SiO4 tetrahedron

Element abundance in Earth's crust – 8 most abundant

Element	Weight %	Atom %	Volume %
0	46.6%	62.6%	93.8%
Si	27.7	21.2	0.9
Al	8.1	6.5	0.5
Fe	5.0	1.9	0.4
Ca	3.6	1.9	1.0
Na	2.8	2.6	1.3
K	2.6	1.4	1.8
Mg	<u>2.1</u>	1.8	0.3
Totals for 8	98.5%	99.9%	100.0%

https://www.webelements.com/periodicity/abundance_crust/

Refineries – separating & concentrating materials

Separates mainly by condensation/boiling points

Metal ores

Separates mainly by density

Chemical Evolution of the Earth

- As molten Earth cooled, last liquid fraction of mantle material solidifies as basalt surface.
- Outgassing of air & water covers entire planet in ocean.
- Motion of basalt surface causes subduction → partial melting makes granite, which floats higher on mantle to make continents.
- Magma with water rising through continents partially melt granite to give mineral-rich pegmatites.
- Increase in oxygen in air leads to oxides and hydroxides.

Magma composition is Life or Death!!

Low-silica basaltic magma is runny, so it doesn't trap gas and explode.
Safe to watch, with care.

Source: http://www.virtualuppermantle.info/Volcano-Mauna-Loa.htm

High-silica granitic magma traps gas then explodes. These volcanoes are killers.

Source: https://www.geocaching.com/geocache/GC2DF5V_soufriere-hills-stratovolcano?guid=411aaaeb-0502-406c-84f4-26c3f375a3f7

The chemistry of the magma controls its behavior and the volcano's effect on people.

Chemical Weathering Types

1. Carbonation:

CO₂ + H₂O --> H₂CO₃ (carbonic acid, a weak acid, from rainwater) and solution:

- 2. Oxidation: $4 \text{ Fe} + 3 \text{ O}_2 --> 2 \text{Fe}_2 \text{O}_3$
- 3. <u>Hydrolysis</u>:

Feldspar + carbonic acid --> clay minerals + silica (dissolved) + K⁺ + Na⁺ + other ions in solution

Mafic mineral + water --> Mg and Fe oxides + OH⁻ + silica (dissolved)

No life would exist without these weathering reactions because they release elements from rocks!

Nitrogen Cycle - a biogeochemical cycle

http://web.ead.anl.gov/ecorisk/ind

Phosphorus Cycle

Source: https://enviroliteracy.org/air-climate-weather/biogeochemical-cycles/sulfur-cycle/

Refining Iron

Sources of CO:

$$2 C(s) + O_2(g) \rightarrow 2 CO(g)$$
 - C comes from charcoal or coke $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ - $CaCO_3$ is limestone $C(s) + CO_2(g) \rightarrow 2 CO(g)$

• Refine the iron ore (iron oxides + silicates) at increasing temperatures in a blast furnace:

$$3 \operatorname{Fe_2O_3}(s) + \operatorname{CO}(g) \to 2 \operatorname{Fe_3O_4}(s) + \operatorname{CO_2}(g) \qquad 200\text{-}700^{\circ}\operatorname{C}$$
 hematite
$$\operatorname{Fe_3O_4}(s) + \operatorname{CO}(g) \to 3 \operatorname{FeO}(s) + \operatorname{CO_2}(g) \qquad 850^{\circ}\operatorname{C}$$
 magnetite
$$\operatorname{FeO}(s) + \operatorname{CO}(g) \to \operatorname{Fe}(s) + \operatorname{CO_2}(g) \qquad \operatorname{up to 1200^{\circ}C}$$

- Makes "pig iron", which is further refined to make steel.
- Waste carried off in slag:

$$SiO_2 + CaO \rightarrow CaSiO_3$$

Refining Copper – starting chemical processes

Smelting process – add heat to get:

2
$$CuFeS_2 + 3O_2 \rightarrow 2 FeO + 2 CuS + 2 SO_2$$
 chalcopyrite

Then these make copper "blister"

$$2 CuS + 3 O2 \rightarrow 2 CuO + 2 SO2$$

$$CuS + O2 \rightarrow Cu + SO2$$

These make slag:

2 FeS + 3
$$O_2 \rightarrow$$
 2 FeO + 2 SO₂
2 FeO + 2 SiO₂ \rightarrow 2 FeSiO₃

Overall - Lots of Earth chemistry to learn!

Atomic-scale chemistry:

What are minerals and rocks made of?

What reactions occur with these materials?

Earth-scale chemistry:

What is the chemistry (rock) under my feet? A geologic map is a <u>chemistry</u> map! How did plate tectonics create it?

How have plate tectonics and other internal processes acted like a chemical refinery to form the materials we find today?

Wow! What a fascinating broadening of our chemistry course!