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Earth’s Heat Budget 14- 1 

14. Earth’s Heat Budget 
This exercise is an introduction to how Earth is heated by the Sun, a critical factor in understanding our weather, the seasons, and the 

nature and causes of climate and climatic change. The lab has five parts and will take two laboratory periods to complete if all parts 

are assigned. Part A is a series of experiments that deal with the intensity of solar energy at changing distances from the Sun, how 

much reaches Earth, and how that varies throughout the year and from place to place on Earth’s surface. The experiments in Part B 

investigate how the reflection and absorption of solar energy by earth materials can influence both local and global temperatures. 

Part C is concerned with the power output of the Sun, the solar flux for other planets in the solar system, and the effect of atmos-

pheres on planetary temperatures. Part D consists of problems summarizing and expanding on some of the topics from Parts A and 

B. Part E is a demonstration of the Coriolis Effect. Parts C and D do not require laboratory access and may be assigned as home-

work.  

A basic scientific calculator is necessary for this lab (and others). If you are unfamiliar with the use of scientific notation (a compact 

way to write and manipulate very large or very small numbers) or with basic geometry and trigonometry, please refer to pages A-4 

and A-5 in the Appendix. For help with converting metric units of distance and energy as you work through the problems in this lab, 

refer to page A-3.  

A. Earth in the Sun’s Rays 

Materials: bench with lamp, solar cell apparatus, digital multi-meter with microamp ranges, translucent screen, globe, solar angle goniome-
ter, metric ruler, protractor 

1. The Solar Flux 

The Sun’s energy is produced by the transmutation of hydrogen into helium via nuclear fusion (as discussed in Part C). Some of this 

energy reaches the planets in the solar system and the amount of energy each planet receives depends on its size and its distance from 

the Sun. The energy received by a planet is called its solar flux (F), defined as units of energy falling on a unit area per unit of time 

(usually as calories/square centimeter/second [cal/cm2/sec], or as Watts/cm2).  

Experiment 1: How does solar energy vary with distance? 

The apparatus for this experiment consists of a bench with a centimeter scale along its length and a lamp, which projects a well-

focused beam of light upon a movable, translucent white screen. By measuring the areas of the spots projected on the screen at dif-

ferent distances from the lamp, we will see how the amount of solar radiation that a planet receives is determined by its distance 

from the sun. 

[     ]  1) Set up the apparatus as shown by your instructor. Make sure that the spot of light is centered on the plastic   
 screen. Begin with the screen at the 50cm mark. (Use the screen itself to set the distance, not the front of the 
 wooden block.) 

[     ]  2) Measure the spot diameter at a screen distance of 50cm (rounding to the nearest centimeter), and record this 
 value in Table 1, Column 3. Repeat the measurement at 100 cm and 200cm.  [Move only the screen, not the 
 lamp.] 

 To simplify calculations and plotting of data, we have defined the 1 meter position as 1 “Distance 
 Unit” (DU). Other distances are then simple proportions of that unit. 

[     ] 3) Calculate the areas of the spots (rounding to the nearest cm
2
), and enter the values into Table 1, Column 4.  

 (Recall that the area of a circle is the square of the radius (r) times  (pi): A = r 
2 
and

 
 3.142.)  

[     ] 4) Compare the spot areas at 50cm and 200cm with the spot at 100cm by dividing each area by the area of the 
 100cm spot. Enter the proportions into Table 1, Column 5.  
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Has the lamp brightness changed during the experiment? No. Of course not. The same amount of energy falls on the screen at each 

distance. But how has the brightness of the spot (the energy per square centimeter, or intensity) changed as you moved the screen 

farther from the lamp?   

Since the intensity of the light at each distance is equal to the energy produced by the bulb divided by the area over which that ener-

gy is spread (the spot area), we can determine the relative intensity of the light at each screen distance. 

 To simplify calculations, we’ll define the standard intensity (intensity of the light at a distance of 100cm) as 1 

unit per cm
2
.  

[     ] 5) Calculate the relative intensity of the light at 50cm and 200cm by dividing the standard intensity (intensity at 

 100cm) by each proportional spot area (Table 1, Column 5). Record the intensity at each distance in Table 1, 
 Column 6. 

[     ] 6) Now, calculate the square of the distance (in DU) for each of the three positions and enter the values in 
 Column 7. 

 

If the intensity increases as the distance increases, we would say that the intensity is directly proportional to the distance. If the inten-

sity decreases as the distance increases, we would say that the intensity is inversely proportional to the distance. 

1 Is the relationship between intensity and distance an inverse or direct relationship? 

2 a. How much smaller is the spot area at ½ DU than at 1 DU? 
 
b. How much larger is the spot area at 2 DU than at 1 DU? 
 
c. Since the same amount of light is falling on each spot, the intensity for ½ DU is ______ times the in-
tensity at 1 DU, and the intensity at 2 DU is ______ times the intensity at 1 DU. 

3    HYPOTHESIS -  

 
     The solar flux (intensity) is inversely / directly (circle one) proportional to the distance 

_____ (to what power?)
. 

     Or, stated mathematically:  Intensity  ∝   _____________________ 

             

 

 

Table 1: Illuminated Areas vs. Distance from Source  

1 2 3 4 5 6 7 

Distance 

(cm)  
DU  

Spot Diameter 

(cm) 

Spot Area 

(cm2) 

Area proportional to 

spot at 1 DU 

Intensity  

(per cm2) 
DU2  

50 1/2       

100 1   1 1  

200 2      
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Experiment 2: Testing your hypothesis 

Now we will measure the current produced by a solar cell (which converts light directly into electricity). The current produced is 

proportional to the area of the cell and the intensity of light falling on it.  

IMPORTANT! READ THIS! 

 
The solar cell apparatus is delicate. Handle it carefully. Lift it only by the handle on top. To start, the LATITUDE dial 
must be at 0°and the SOLAR ANGLE dial at 90°. If you cannot easily adjust the angle ask your instructor for help. NEV-
ER use force to rotate the angle indicators. 

[     ] 1) Place the solar cell box 1 meter from the light source: align the white index mark on the side of the base with 
 the 1 meter mark on the bench. Make sure the solar cell is directly facing the light, and that the spot of light is 
 centered around the opening at the front of the box. The “Solar Angle” dial should indicate 90°, and the 
 “Latitude” dial should read 0°. 

 To simplify calculations and graphing, we will also define 1 “Intensity Unit” (IU) as the electrical current 

measured at 1 Distance Unit.   

[     ] 2) Switch the lamp to its highest setting. Read the current on the digital meter. (Ask your instructor if in doubt 
 about which scale to use.) Enter this value (including the appropriate units) in the “Current” column in Table 2 for 
 1 Distance Unit (1 meter).  

[     ] 3) Based on your hypothesis from Experiment 1 (Question #3, p. 2), predict what you expect to measure (in IU) 
 at 0.50 DU and 2.00 DU. Record your predictions in Table 2, Column 2. 

[     ] 4) Move the solar cell to 0.50 DU. Record the measured electrical output in Table 2, Column 3a.  

[     ] 5) Convert your electrical output measurement to IU (Column 3b) by dividing the current at 0.50 DU by the  
 current at 1.00 DU. Is this answer consistent with your hypothesis (predicted intensity)? (Record your answers in 
 Table 2.)  

[     ] 6) Repeat steps 4 & 5 for 1.50 DU and 2.00 DU. 

[     ] 7) Based on your measurement at 1.50 DU, predict what you expect to measure (in IU) at 0.75 DU. Then, repeat 

 steps 4 & 5 for 0.75 DU to determine the actual flux (electrical output) for 0.75 DU. 

[     ] 8) Enter the class average for IU at each distance in Column 4. 
 

Table 2: Light Intensity vs. Distance from Source  

1 2 3a 3b 4 5 

Distance Units 

(DU)  

(meters) 

Predicted  

Intensity 

(IU) 

Current 

(A or mA) 

Intensity Units 

(IU)  

IU  

(Class Avg.) 

Consistent with 

hypothesis? 

(2nd) 0.50      

(do last) 0.75      

(do 1st) 1.00  1.00  1.00 1.00  

(4th) 1.50 XXXXXXXXXX     

(3rd) 2.00      
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4 Does the intensity vs. distance relationship agree with your predictions? 
  
 
What would be the intensity at 0.25 DU? _____________  at 4 DU? _____________ 

5 Plot the class averaged intensities (Table 2, Column 4) versus distance from 0.50 DU to 2 DU on the 

graph below. Also plot a curve for your intensity predictions (Table 2, Column 3b). Make sure you clear-
ly label your curves or include a legend.  
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2. The Geometry of the “Inverse-Square” Relationship 

Our hypothesis is only as good as the experiments it is based on, so an important question is how well do those experiments model 

what actually happens to the sun’s energy as it travels through space?  One way to answer this question is to consider the geometry 

of our experiment. Think of the lamp as being at the center of an imaginary sphere with a radius of 1 DU. When the screen is 1DU 

from the lamp the circle of light represents a small portion of the surface of this sphere. Since the radius of this imaginary sphere is 1 

DU the total surface area a1 of the sphere is: 

           Eq. 1a 

      

Now imagine a point on a second sphere with twice the radius of the first. The distance from the lamp to this point is 2 DU and the 

radius of this sphere is 2 DU. The surface area of the second sphere is: 

 

        Eq. 1b 

6 The surface area a2 is how many times greater than a1? __________________ 

Now imagine Earth situated on the outside of a sphere with the sun at its center. The radius of this sphere is 150×106 km. 

(Astronomers call this radius 1 AU (“Astronomical Unit”) to simplify calculations). So the surface area of this “Sun-Earth sphere” is: 

 

 

 

7 Imagine another planet, Z, the same size as Earth but twice as far from the Sun. It would occupy a 
sphere with a surface area: (Fill in the missing value in the equation below.) 

 

 

 

The important point to remember here is that the solar flux (F) for any planet (the amount of energy received per unit area per unit 

time) is inversely proportional to the surface area of the Sun-planet sphere, which in turn is proportional to the square of the dis-

tance from the Sun, R.  Geometry thus forces this simple rule: the energy a planet receives varies by 1/(the square of its distance 

from the Sun): 1/R
2
. This, the inverse-square rule, applies to many forms of radiation as well as to the force of gravity! We can 

use this rule to find the ratio between the energy flux at two locations at distances R1 and R2. If R1 < R2 then: 

 

 

 
 
Check your experimental values for any 2 distances against those predicted by Eq. 3. They should agree. 
   
 

 

2
1 14  a

2
2 24  a

214 AUaE  

  24 AUaZ  

(pay special attention to the subscripts) 

Eq. 2a 

Eq. 2b 

Eq. 3 F1/F2 = R2
2/R1

2 
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3. Variations in Solar Flux due to the Eccentricity of Earth’s Orbit 

Planetary orbits are not perfectly circular, but slightly elliptical, so the distance of a planet from the sun will vary somewhat through-

out its solar year. The radius of Earth’s orbit (R) varies from 147.5 × 106 km at perihelion (around January 4), its closest approach to 

the Sun, to 152.5 × 106 km at aphelion (around July 4) when Earth’s distance from the Sun is greatest. (See Figure 1.)  

Experiment 3: The solar flux at perihelion and at aphelion 

Is this variation in distance the cause of our seasons? First we’ll try to answer this question with an experiment.  

[     ] 1) Set up your lab equipment to measure the energy received by the photocell at 147.5 cm (perihelion; Jan 4), 
 which is marked with a ‘P’ on the bench scale. (Make sure you align the white mark on the side of the solar cell, 
 not the front of the solar cell, with the appropriate distance.) Record the current output (energy) with the 
 appropriate units (μA or mA) in Table 3. 

[     ] 2) Repeat the measurement for 152.5 cm (aphelion; July 4), which is marked with an ‘A’ on the bench scale.  

8 What is the % difference between the current generated at 147.5cm and at 152.5cm? Use the  
equation below in your calculation. 

(where p = perihelion reading, and a = aphelion reading) 

 

9  Based on these results, should Earth be WARMER or COLDER in January than in July?  

 
 

10 The experimental values should agree well with those predicted by Eq. 3. Do they? 

 

 

Sun
Earth on Jan. 4

(Perihelion)Earth on July 4
(Aphelion)

Summer Solstice
June 21

Winter Solstice

December 21

Vernal Equ inox
March 20

Autumnal Equinox
September 22 Figure 1 

100






 

p

ap

Table 3: The Solar Flux at Perihelion vs. Aphelion  

 “Perihelion”: 147.5cm (January 4) “Aphelion”: 152.5cm (July 4) 

A or mA   
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We Earth dwellers do not seem to notice these small but real changes in solar flux. One reason is that the variations affect the planet 

as a whole: they are distributed over the entire surface of Earth, so their effects in any one location are masked by the very much 

larger seasonal changes that are strongly dependent on where we live. For example, while we may be skiing in January in the North-

ern Hemisphere, Australians are sweltering in the sun. Does it seem reasonable that there must be another mechanism besides our 

distance from the sun which accounts for the seasonal changes we experience? 

 

4. Seasonal Variations in the Solar Flux  

The large variations we know as seasons have nothing to do with changing distances from the sun but depend instead on the fact that 

Earth’s axis is inclined to the plane of its orbit. The following experiments will demonstrate how the seasons are a result of this “tilt”.    

Experiment 4: Sun-Earth orientation at the EQUINOXES 

There are 4 events each year that mark the beginnings of the seasons, two EQUINOXES (around March 21 and September 23), and 

two SOLSTICES (around June 22 / December 22). On either equinox (which means “equal night”) the day and night are equally 

long, each 12 hours, because the plane of Earth’s rotational axis is perpendicular to the Sun’s direction. (See Figure 2.) 

 

 

 

23½°

23½°

23½°

Sun
23½°

Tropic  of Cap ricorn
23½° S

Tropic of Cancer

23½°N

On the  
the plane of Earth’s axis

is at right angles to the
Sun’s rays. The Sun is directly 

overhead at noon on the Equator.

Autumnal Equinox

On the 
the plane of the Earth’s 
axis is at right angles to 
the Sun’s rays. The Sun 
is directly overhead at 
noon on the Equator.

Vernal Equinox
On the 

Earth’s axis is tilted away 
from the Sun. The Sun 

is directly overhead at noon 
on the Tropic of Capricorn.

Winter Solstice 

On the 
Earth’s axis is tilted toward 
the Sun and the Sun is
directly overhead at noon
on the Tropic of Cancer.

Summer Solstice

Northern hemisphere winter.

Northern hemisphere summer.

Figure 2 
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[    ]  1) Replace the cell assembly with a globe. Place one of the flat wooden blocks beneath the globe to support it. 
 Orient the globe so that the plane of its axis is at a right angle to the direction of the lamp. (The meridian, the 
 metal ring around the globe, is in the plane of the axis, so should be oriented perpendicular to the lamp.) This is 
 the orientation of Earth relative to the Sun on the first day of Spring (the Vernal Equinox) and on the first day of 
 Fall (the Autumnal Equinox).  

[     ] 2) Rotate the globe, keeping the meridian stationary. Notice that there is a point that is always in the center of 

 the spot of light on the globe. As you rotate the globe, this point defines a line along which the sun (at  
 approximately noon local time) will always be directly overhead (that is, at 90°) somewhere.  

11 What is this line called?____________________________ Its latitude is ________°. 

The maximum elevation angle or “solar angle” (we’ll call it ) is the angle between the earth’s surface at any point and the sun “at 

transit” (that is, at its highest point in the sky). This occurs at approximately noon local solar time (see Figure 3), and varies depend-

ing on the day of the year, and the latitude.  

>>Of course in Chicago the sun is never directly overhead (why?).<<  

[     ] 3) Rotate the globe so that Chicago is exactly half way between the two sides of the meridian. This is the  

 position of Chicago relative to the sun at solar noon on the equinox. (See Figure 4a, p. 14-10.) 

[     ] 4) Find the solar angle for Chicago at Equinox using the following methods.  
 [     ] a) Measure it directly on the globe with the “solar angle goniometer” (a modified protractor). Your   
  instructor will show you how to do this. Enter the measured solar angle for Chicago at the EQUINOX 
  in the appropriate space in Table 4.  

 [     ] b) Check your measurement by calculating it from this formula:  = 90° - latitude. Record your  

  calculated solar angle in the appropriate space in Table 4.  

Experiment 5: Sun-Earth orientation at the SOLSTICES 

On the SUMMER SOLSTICE, approximately June 22, Earth’s axis is tilted toward the Sun in the Northern Hemisphere.  

[     ] 1) Turn the globe so that the North Pole is tilted directly towards the lamp. This is Earth’s position on the 
Summer Solstice. Rotate the globe as before.   

12 Now the sun is directly overhead along another line, not the Equator. What is this line called and what 
is its latitude?  ____________________________________________ .  

 

solar 
elevation
angle

Figure 3 
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[     ] 2) Rotate the globe so that Chicago is facing the lamp (nearly underneath the meridian). This is the position of 
 Chicago relative to the sun at solar noon on the Summer Solstice. (See Figure 4b, p. 14-10.) 

[     ] 3) Find the solar angle for Chicago at the Summer Solstice using the following methods.  
 [     ] a) Measure it directly on the globe with the “solar angle goniometer” (a modified protractor). Your  
  instructor will show you how to do this. Enter the measured solar angle for Chicago at the SUMMER 

  SOLSTICE in the appropriate space in Table 4.  

 [     ] b) Check your measurement by calculating it from this formula:  = 90° - latitude + 23.5˚. (Why do 

  we add  the tilt of the axis? See Figure 4b.) Record your calculated solar angle in the appropriate  
  space in Table 4.  

On the WINTER SOLSTICE, approximately December 22, Earth’s axis is tilted away from the Sun in the Northern Hemisphere. 

[     ] 4) Turn the globe so that the North Pole is tilted directly away from the lamp. This is Earth’s position on the  
 Winter Solstice. Rotate the globe as before.   

13 What is the name and latitude of the line where the Sun is directly overhead?  

 
[     ] 5) Rotate the globe so that Chicago is facing the lamp (nearly underneath the meridian). This is the position 
 of Chicago relative to the sun at solar noon on the Winter Solstice. (See Figure 4c, p. 4-10.) 

[     ] 6) Find the solar angle for Chicago at the Winter Solstice using the following methods.  
 [     ] a) Measure it directly on the globe with the “solar angle goniometer” (a modified protractor). Your  
  instructor will show you how to do this. Enter the measured solar angle for Chicago at the WINTER 

  SOLSTICE in the appropriate space in Table 4.  

 [     ] b) Check your measurement by calculating it from this formula:  = 90° - latitude - 23.5˚. (Why do 

  we subtract the tilt of the axis? See Figure 4c.) Record your calculated solar angle in the appropriate 
  space in Table 4.  

Experiment 6: Solar Flux vs. Seasons 

Now you will compare the solar radiation in Chicago at the start of each of the seasons, based on the solar angles you just found. Use 

the value at the Winter Solstice as a standard. 

[     ] 1) Place the solar cell assembly at 1 Distance Unit from the lamp. Align the apparatus as before, making certain 
 that the solar cell is perpendicular to the light beam to start.  

[     ] 2) Tilt the cell using the SOLAR ANGLE INDICATOR on the left side of the solar cell box. Set it to the angle you 
 found for the Winter Solstice in Chicago.  

[     ] 3) Measure the current received at the Winter Solstice solar angle and record the value in Table 4. 

[     ] 4) Repeat steps 2-3 for the Summer Solstice and Equinox solar angles. 

 

 



 

14- 10 Earth’s Heat Budget 

Figure 4a—EQUINOX 

Figure 4c—WINTER SOLSTICE 

Figure 4b—SUMMER SOLSTICE 
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[     ] 5) Compare the energy received at our latitude on the Winter Solstice with that for the Vernal and Autumnal 
 Equinoxes, and for the Summer Solstice. Consider the energy measured for the Winter Solstice as 100%. Using 
 the equation below, calculate the percent energy received for each relative to the Winter Solstice. Record your 
 answers in Table 4. 

Percent relative to Winter = Energy at Equinox or Summer Solstice  x  100 

                                   Energy at Winter Solstice  

 

14  What is the percent difference for the Summer Solstice compared to the Winter Solstice? (See Question 
#8 on p. 14-6 for the equation for percent difference.) How does this compare to your calculation for the 
percentage difference from aphelion to perihelion? (Experiment 3) 

 

15 Based on your results for Experiments 3-6, which has a greater control over the seasonal temperature 
variations on Earth: the distance of the Earth from the Sun or the tilt of the Earth relative to the Sun? 

 

 

Table 4: Seasonal Changes in Solar Flux at the Latitude of Chicago (41°50N)  

Time  of Year 
Winter  Solstice   

(~Dec. 22) 

Vernal  and Autumnal  

Equinoxes  

(~Mar. 21, ~Sep. 23) 

Summer  Solstice  

(~June 22) 

Solar Angle 

(measured) 
   

Solar Angle    

Measured Current    

% vs. Winter Solstice 100%   

Sun is overhead at this    
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5. Variation in Solar Heating with Latitude 

Next we consider the effect of latitude on the intensity of solar radiation. It is obvious that the tropics (the portion of the earth be-

tween 23.5°N and 23.5°S) are the warmest year round while the polar regions are coolest. It may also be obvious that this has some-

thing to do with the decrease in solar angle as we travel from the Equator towards the Poles. But how exactly does the flux vary? Can 

this variation be expressed mathematically so that we could predict the relative amounts of radiation received at various places on 

Earth’s surface (or on the surface of any planet)?  

Experiment 7: Solar Flux vs. Latitude 

[     ] 1) Position the solar cell assembly at 1 meter from the lamp and make certain the cell is perfectly vertical 
 (LATITUDE dial = 0°, SOLAR ANGLE dial = 90°). The current generated here represents the energy falling on 
 the Earth at the Equator when the Sun is directly overhead. Record this current in Table 5 in the 0° latitude 
 column.  

[     ] 2) Rotate the solar cell so the latitude is 15˚ and the solar angle is 75˚. Measure the current generated at this 

 latitude/ solar angle combination and record the value in Table 5. 

[     ] 3) Repeat step 2 for the other latitude/solar angle combinations listed in Table 5. 

 

 

 

 

 

[     ] 4) Calculate the proportion of current at each latitude based upon that measured at the Equator (proportion 
 of current at Equator = 1.00). Record your answers in Table 5. 

[     ] 5) Calculate the cosines for each angle of latitude and enter them in Table 5. 

16 Why does the flux decrease with latitude? 

 

17   Formulate a “rule” to predict the solar flux relative to the equator. (Look at the values recorded in Table   
5. How do the proportions for current relate to the latitude?) 

 

Table 5: Variations in Solar Flux with Latitude 

Latitude 0° 15° 30° 45° 60° 75° 90° 

Current        

Proportion of 

Current at 0° 

1.00       

Cosine of the 

latitude 

       

Max. Solar 

Angle at 

Equinox 

90° 75° 60° 45° 30° 15° 0° 
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Part B: The Reflection and Absorption of Solar Energy 

Materials: 75W flood lamp on ring stand; 45° solar cell block with digital multi-meter; 3” × 5” trays of surface materials as listed in Table 6; 
black and white foam-board squares with embedded thermometers 

1. Albedo 

Albedo is the ratio of the total light reflected from a surface to the 

light incident (received) on that surface. (The fraction that is ab-

sorbed by a surface is then [1 - albedo]). A planet’s total (or astro-

nomical) albedo is the sum of the terrestrial albedos of its various 

terrains and of clouds in its atmosphere, and is partly responsible for 

the brightness of a planet in the night sky as viewed from Earth (the 

other factors being the planet’s size and distance from Earth). 

Earth’s astronomical albedo is approximately 0.30. 

Experiment 8: What is Albedo? 

In the following experiment you will determine the relative albedos of various earth materials by measuring their reflectivity with a 

solar cell. To see how albedo affects heating of the Earth’s surface, you will also measure the temperature change for two surfaces that 

differ only in brightness. 

[     ] 1) Make sure the multimeter is set to read mA; then, measure the incident energy as shown in Figure 5a. Record 

 the value in Table 6. 

[     ] 2) Describe the color of each surface listed in Table 6. Then, rank the texture of each surface on a scale of 1 - 5, 
 with 1 being the smoothest and 5 the roughest. Record your observations in Table 6. 

[     ] 3) Now, measure the reflected energy (see Figure 5b) of each surface listed in the table. For accuracy, it is 
 important that the surface of the solar cell be at the same distance from the lamp as the reflecting surfaces. 
 Read the generated current and enter the values in Table 6. Turn off the lamp when you are finished. 

[     ] 4) Calculate the energy of the reflected light as a percentage of the incident light and record your answers below. 

(a) incident (b) reflected

Do not touch the bare surfaces of the solar cells!

Light source

Solar cell

S
ol
ar c

el
l

Light source

Figure 5 

Table 6: Albedos of Various Earth Surfaces 

Incident energy: _________________milliAmps 

Surface Color 

Texture 

(1=smoothest,         

5 = roughest) 

Reflected Energy 

(mA) 

% Reflected 

(Albedo) 

A. Very Fine Sand     

B. Beach Sand     

C. Fine Gravel     

D. Coarse Gravel     

E. Glacial Till     

F. “Snow”     

G. Volcanic Glass     
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18  Which surface has the highest albedo?   

19 … the lowest albedo?  

20 Which characteristic of the materials seems to have the LARGEST effect on albedo? (Circle one.) 

 TEXTURE /  COLOR / TYPE OF MATERIAL 

21 Which characteristic has a smaller but still measurable effect on albedo? (Circle one.) 
 TEXTURE /  COLOR / TYPE OF MATERIAL 

22 Which characteristic has the LEAST effect on albedo? (Circle one.) 
 TEXTURE /  COLOR / TYPE OF MATERIAL 

Experiment 9: How does albedo affect surface temperatures? 

We will measure the temperatures of two pieces of foam-board after they are exposed to a lamp for a few minutes. 

These foam-boards have embedded thermometers to measure their temperature. They differ only in their color, and both 
are the same size, shape, and mass. 

[     ] 1) Read the initial temperature of each foam-board using the embedded digital thermometer; record it in Table 7.  

[     ] 2) Place the two foam-boards side-by-side on top of the wooden blocks, and move them so that they are  
 underneath the lamp. Allow the boards to warm for no more than 10 minutes, then record the final  
 temperature of each board in Table 7. 

[     ] 3) Calculate the increase in temperature for each board (ΔT) and record it below.  

23  Which board has the larger increase in temperature?_________ Why? 

 
 

2. The Absorption and Retention of Heat by Earth Materials 

The instructor will begin this experiment at the start of class. It requires about 90 minutes to complete. 

One of the major factors affecting local and global climates is the ability of solid earth materials (rocks, soils, and vegetation), water, 

and atmospheric gases to absorb and retain heat. This ability is called heat capacity. A useful way to think of heat capacity is as the 

amount of heat a substance can absorb before its temperature increases. The next experiment is a demonstration of the difference in 

the heat capacities of water and sand.  

 

Table 7: Temperature Differentials of Black and White Surfaces 

Color T (°C) initial T (°C) maximum T (difference) 

White    

Black    



 

Earth’s Heat Budget 14-15 

Experiment 10: Do land and water heat and cool at the same rate? 

We will use an infrared lamp to heat a container of sand and a container of water. The containers are identical and each 
hold equal masses of sand and of water. To eliminate albedo as a variable, both containers are black; thus any differ-

ence in heating and cooling rates should be due only to the inherent heat capacities of the sand and the water. The ex-
periment will be started when class begins. The heating stage will last for 15 minutes, then the lamp will switch off auto-
matically and cooling will continue for another 75 minutes. Because of the length of the experiment, you may have to 
complete this section after class. You will receive a printout of the temperature vs. time plot from the experiment before 
the end of class. When you turn in your lab report, include the plot.   

A quality related to heat capacity, the specific heat, is defined as the number of calories required to raise 1 gram of a 
substance by 1 degree Celsius. A standard definition of the calorie is that it is the amount of heat required to raise the 
temperature of 1 gram of water by 1 degree Celsius. Thus it follows that the specific heat of water is defined as 1, 
and values for other substances are then expressed as ratios compared to the specific heat of water. For example, a 
gram of material that responds to a heat input of 1 calorie by a 2° rise in temperature has a specific heat of 0.5. The im-

portant point to remember is that substances with low specific heats respond to heating more rapidly than those with 
high specific heats.  

From this experiment we will obtain a reasonable estimate of the specific heat of sand relative to water by comparing the 
slopes of their heating curves on the graph.  

[     ] 1) Using the plot, record the starting temperatures for water and sand in Table 8, Column 1.  

[     ] 2) In Column 2, record the maximum temperature of the water and of the sand .  

[     ] 3) In Column 3, record the temperature difference (T) between the starting temperature and the maximum 

 temperature. 

[     ] Divide T for water by T for the sand to obtain the specific heat of sand. Record this value in Column 4. 

 of the table.  

24  Based on these results, explain the moderating effect Lake Michigan has on our local temperatures, both 
seasonally and over the course of a single day.  

 

25  Explain why sea surface temperatures, in comparison to the very wide fluctuations that occur on land, 
range only about 15°F (~8°C) in any locality over the course of a year.   

 

 

Table 8: Heating and Cooling of Sand vs. Water 

1 2 3 4 

 

T (°C) @ start T (˚C) @ 15 min. ΔT Specific Heat 

Water    1.00 

Sand     
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C. More about the Sun’s Energy and Planetary Temperatures 

1. How Does the Sun Produce Energy?  

The Sun’s energy is produced largely by the fusion of hydrogen (H) nuclei into helium (He). This is a complex process with several 

intermediate steps but may be summarized as: 4H  He.   

26 The mass of a hydrogen atom is 1.67265 × 10
-24

 gram. The mass of a helium atom is 6.64552 × 10
-24

 gram. 
Is the mass of 4 H atoms equal to the mass of 1 He atom? ____  How much mass is “missing” from each 
4H → He fusion reaction? ________________grams 

What has happened to the “missing” mass? According to Einstein’s mass/energy equivalence:  

E = mc
2
        Eq. 4 

the mass m (in grams) lost,  multiplied by the square of the velocity of light c (3.0 × 1010 cm/sec) equals the energy E produced (in 

ergs).  

27 The mass of hydrogen converted to helium by nuclear fusion in the Sun every second is about 5.4×10
11

 
kg, (600,000,000 tons!)—equivalent to 3.3×10

38
 H atoms. Use Eq. 4 to calculate the energy released by 

the sun each second as a result of the fusion reaction 4H  He. [First solve Eq. 4 using the mass ob-

tained for Q26 in order to determine how much energy is produced (in ergs) from each 4H → He fusion reaction. 
Then multiply that result by the number of H atoms consumed per second divided by 4, since each fusion reac-
tion consumes 4 H atoms.] 

          ___________ergs/sec 

2. How Much of the Sun’s Energy is Radiated into Space?  

The spectrum of radiation emitted by a body depends on the temperature of the body, and this provides us with a more straightfor-

ward way to calculate the energy output of any body, including stars. A common example of this principle: when a bar of iron is 

heated it first emits infrared radiation, which is invisible but can be felt. As the iron increases in temperature it emits visible radia-

tion, first red, then orange, then yellow, and as temperature increases the frequency () and the energy (E ) of the emitted radiation 

also increases. This idea is expressed mathematically as the Stefan - Boltzmann Law (Eq. 5). 

E = T
4
        Eq. 5 

This equation allows us to calculate the energy emitted by a warm body if we know its surface temperature. Here E = the energy 

flux, in calories / cm2 /sec (the amount of energy given off every second over a square centimeter),  (sigma) = 1.36 x 10-12cal/cm2/

K4/sec is the Stefan - Boltzmann Constant, and T is the temperature of the body on the Kelvin Scale, where 0K = -273.15°C. In 

brief, it states that a heated body radiates energy that is proportional to the 4th power of its temperature. For example, a body at 

2000K (1727°C) will radiate 16 times as much energy as a body at 1000K (727°C).  

28 Find the energy output of the sun (in cal/cm
2
/sec) using the Stefan - Boltzmann law. For T use 6000K , 

the approximate temperature of the sun’s photosphere (its outermost layer):  _________________  

 

29 The sun’s diameter is 1.4 × 10
6
 km (1.4 × 10

11
cm). Find the total emitted energy (Ê) output of the sun in 

cal / sec.   
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3. How Much Solar Energy Reaches Earth? 

Here we can apply the inverse-square rule we derived in Part A. First, calculate the solar flux for Earth. At Earth’s distance the total 

energy output (Ê) of the Sun has spread out over the surface area (S) of a sphere with a radius (R) of 150 million  (1.5 x 108) km (our 

average distance from the Sun). The solar flux (F) for Earth is then 

      F = Ê / S = Ê / 4·R2
 .       Eq. 6 

» To express F in cal / sec / cm2, R must be in centimeters:  1.5 x 108km = _______________cm 

30 Calculate F, the solar flux for Earth. Show your work. F = _____________________ cal / sec / cm
2
  

 

 

 

To calculate the total amount of radiation received by Earth, note that we can disregard the fact that Earth is a sphere. That is, for this 

calculation the area over which Earth receives solar energy is equal only to the area of a disk with the same radius as the Earth. Do 

you understand why? (Recall the results of the latitude experiment in Part A5.) If not, your instructor can do a simple demonstration 

to illustrate this. 

31 Earth’s radius is 6378 km (6.378 x 10
8 
cm). Calculate the energy received by Earth, in cal / sec, and in 

Watts. (A calorie/second is equivalent to 4.18 Watts.)  

 

 

4. How Much Solar Energy is Absorbed by Earth? 

Here we must take into account Earth’s albedo, the proportion of solar energy reflected back into space. Overall, Earth’s albedo is 

approximately 0.33, meaning that [1-albedo] or about 2/3 of the energy intercepted by Earth is absorbed. 

32 How much solar energy is absorbed by Earth every second? __________________cal 

 

5. Does Earth Emit Energy, and How Much? 

If Earth only absorbed energy it would keep heating up (and eventually melt), so an equal amount of energy must be radiated back 

into space.  (Note that this is not the same as the amount reflected, which is accounted for by the albedo.) 

33   (a). First, find the total surface area of Earth in cm
2
.  

 
(b). Using the amount of solar energy absorbed by Earth every second that you calculated above (in 
Q32), how much radiation does each cm

2 
of Earth’s surface emit every second?  
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Now if we return to the Stefan - Boltzmann relationship and rearrange its terms we can find what is known as the effective tempera-

ture (Teff ) of Earth:  

Teff = (E/)
1/4       

Eq. 7 

34 Calculate the Teff for Earth using Equation 7. (Calculate the temperature in K and convert to °C. Note that 
the power ¼ can be obtained by taking the square root of a square root.) 
 

Since Teff takes into account the albedo, it can also be calculated more directly from the following equation. Note that with this equa-

tion we do not have to consider the size of Earth! 

   

 

 

Teff is a theoretical temperature calculated from the energy radiated by a simple warm body. But Earth’s actual average surface tem-

perature is 288K (15°C / 59°F)!  

35 How can we explain this discrepancy? What critical property of Earth have we so far neglected?  

 

 

 

 

We will return to this issue after looking at the solar flux and  Teff for other planets.  

 

 

  4/1

4
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


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fluxsolaralbedo
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14- 20 Earth’s Heat Budget 

6. Surface Temperatures of the Terrestrial Planets 

Table 9 contains data for the inner planets of our solar system. We might expect that the temperatures of the planets would be based 

on the solar energy they receive per cm2, according to the inverse-square rule.  

Enter your calculated value for Earth’s solar flux into the appropriate cell in Table 9, Column 5; then calculate the 
solar flux for Mercury, Venus, and Mars as a proportion of Earth’s, and enter those values into Column 6. Use the 
data in Columns 3 and 6 to plot the solar flux for each planet against its distance in AU from the Sun in Figure 6.   

Table 9: Solar Flux, Albedo, and Average Surface Temperature for the Inner Planets 

1 2 3 4 5 6 7 8 9 10 

Planet 
Radius 

(km) 

AU from 

Sun 
1/AU2 

Solar Flux 

(cal/sec/

cm2) 

Solar Flux 

(Earth =1) 
Albedo 

Effective 

Temp 

(°C) 

Atmos-

pheric 

Pressure, 

(Earth =1) 

Avg.  

Surface 

Temp 

(°C) 

Mercury 2439 0.387 6.68 0.250  0.12 177 ~0 
-180 to 

+430 

Venus 6050 0.733 1.86 0.071  0.75 -32 100 480 

Earth 6378 1 1  1 0.33 -12 1 15 

Mars 3398 1.533 0.426 0.016  0.16 -50 0.006 -23 

AU from Sun

(1 AU = 1.5 x10  km)
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36 The solar flux plot should be consistent with the inverse-square relationship you observed in lab. Is it? 

Now plot the surface temperatures (Column 10) against the distances (for Mercury use the maximum temperature).  

37  Are the planets generally WARMER or COLDER than predicted by the inverse-square rule?   

Which planet is the exception?    
Of the planets that are warmer than the inverse-square rule predicts, which deviates most strongly?  

 

Note that Mercury, with its low albedo and nearly non-existent atmosphere, has a daytime temperature that conforms quite closely to 

the inverse-square plot. Now look at Venus—it reflects 3 times more solar energy than it absorbs (albedo = 0.75), and as a conse-

quence its has a Teff  lower than Earth’s, though it is closer to the Sun than Earth. Yet, at the same time, its atmosphere is much dens-

er than Earth’s and its actual surface temperature is substantially higher. It seems as though the presence of an atmosphere simultane-

ously increases the amount of reflected energy and increases the planet’s average temperature. How is this possible? 

7. The “Greenhouse Effect” 

As we learned when discussing the Stefan - Boltzmann Law, a warm body radiates energy across the width of the electromagnetic 

spectrum. However, it is also important to know the distribution of energy across the spectrum. For example, the distribution of the 

Sun’s emitted energy is about 9% in the ultraviolet, 41% in the visible spectrum, and 50% in the infrared, and its peak emission is 

within the range of visible light. The wavelength of this emission peak, called the wavelength of maximum intensity (max), shifts 

with the temperature of the body. This shift is described by Wien’s Displacement Law, 

max  =  A / T      Eq. 9 

which states that as temperature increases the intensity of emission at max increases and its wavelength becomes shorter. The con-

stant A = 2.9×106. For example, the max of the sun falls in the blue range of the visible spectrum (see Figure 7): 

max  = 2.9×10
6 
/  6000K = 480nm 

Because gases in Earth’s troposphere are transparent to wavelengths in the ultraviolet and visible parts of the spectrum, most of the 

sun’s radiation (minus the one-third that is reflected) reaches the surface where it warms the oceans and continents. These surfaces, 

in turn, continually re-radiate this energy back into the atmosphere, a process known as ground radiation or terrestrial radiation.  

 

 

 

 

38 What is the wavelength of maximum intensity for ground radiation? Calculate max for Earth (for T, use 

288K).  

 

39 This is in what region of the electromagnetic spectrum? 
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D. Follow-up Problems 

40 Earth’s atmosphere is transparent to the shorter wavelengths in the UV and visible spectrum, but is 
more opaque to infrared radiation. Although all atmospheric gases (N, O, Ar, CO2, and H2O) absorb infra-
red to an extent, some of these, the so-called “greenhouse gases” (CO2, H2O, and also methane CH4), are 
much more efficient absorbers of these longer wavelengths. Discuss how the presence of an atmos-

phere can make a planet warmer than would be predicted from the simple application of the inverse-
square rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41 The solid earth absorbs about 55% of solar radiation reaching it. What percentage of the Sun’s energy 
reaching Earth is absorbed by the atmosphere? 

 

 

 

 

42  The albedos of the Northern and Southern Hemispheres are very similar though the hemispheres differ 
markedly in the relative proportions of land mass to ocean (there is much more land north of the Equa-
tor than to the south). However, average annual cloud cover is much the same for both hemispheres. 
What does this suggest about the role of clouds in Earth’s radiation balance? 
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temperature increases

melting of snow and ice

temperature decreases

43 On sunny winter days the air temperature often remains low if there is widespread snow cover, and little 
melting occurs. On the other hand, any bare spots in the snow cover will tend to enlarge even though 
the air temperature does not increase. Explain. 
 
 
 
 

 
 
 
 
 
 

44 Many natural systems are homeostatic. That is, they respond to external stresses in such a way as to 
keep within “normal” limits. Planetary temperature regulation is one such system. Consider what you 
have learned today and complete the diagram on the right to show how an increase in surface tempera-
ture can initiate a series of events, which eventually lead to a temperature decrease. The first events are 

filled in for you. There are 4 empty steps in the flow chart. Add more if you wish but all must logically 
precede a temperature decrease. 
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E. The Coriolis Effect 
 
The planetary temperatures we have discussed are averages. Polar regions receive much less radiation than temperate zones and 

Equatorial regions receive most of all. Because of this differential heating, Earth’s atmosphere undergoes convective heat transfer 

from the Equator to the Poles. This produces prevailing wind patterns, which are in turn influenced by the rotation of the Earth. This 

exercise is a demonstration of the Coriolis Effect, a consequence of Earth’s rotation. 

Our apparatus consists of a remote-controlled missile launcher positioned at the center of a turntable and aimed at a target at the end 

of a long extension arm attached to the turntable. For our purposes, we will consider the center of the turntable as one of the Poles 

with the target’s location as the Equator. In the figures below the arrows represent the path of the missile when the turntable is sta-

tionary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45   Wind is simply air moving from a region of higher pressure to a region of lower pressure. Based on our 
Coriolis demonstration, illustrate how winds circulate around atmospheric “highs” and “lows” in the 
Northern Hemisphere. 
 
 
 
 
 
 
 

46 The Coriolis Effect is sometimes called the “Coriolis Force”. Why is this incorrect? 

Trial 1: Stationary platform 

Does the missile hit the target? 

Trial 2: Platform rotates counter-clockwise (CCW) 

Draw the direction of rotation and the path of the missile.  

Trial 3: Platform rotates clockwise (CW) 

Draw the direction of rotation and the path of the missile.  

gun

gun

gun

H L 
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