

Assessment and Learning

Dr. Bruce Herbert

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Organization of the Short Course

- Agenda
- Logistics
- Wiki

Setting the Stage

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Recommendations from national reports on the state of STEM education in higher education institutions.

- Development of new content and curriculum
- Implementation of more effective pedagogy and assessment
- Focus on student skills as important learning outcomes
- Improving of scientific literacy in citizens, and
- The potential of information technology (IT) to support learning

http://naples.cc.sunysb.edu/Pres/boyer.nsf/

Higher Education Reform Requires

University teaching is one of the few social activities that has not fundamentally changed.

Reform requires

- Infrastructure & tools
- New teaching practices focused on learning
- Removal of barriers that limit faculty participation in the reform effort

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Calls to Engage Scientists & Engineers

- Efforts to reform secondary and tertiary science education often call for scientists' participation
- Supported by major funding agencies: NSF, NIH, HHMI
- Most models describe roles for scientists that
 - Have limited systemic impact
 - Rarely create synergy between the science research and education

Nature, 13 December 2001

Dissatisfaction Leading to Change

"When I started as a teacher, my students, my administrators thought that I was doing a very admirable job. And as long as I asked questions I had trained the students to do, they did fine. But if I snuck up on them just slightly and went for some depth of understanding, then they were in trouble. And that bothered me."

Minstrell, J. (1997) In Annenberg/CPB Minds of Our Own Videotape. Program One: Can We Believe Our Eyes, Math, and Science Collection. Burlington, VT.

Teaching in the Fiji Islands as a Peace Corps Volunteer

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Tenure Opened New Avenues for My Professional Career

What should be the nature of the education-research continuum in academic life?

- AGI-IDIG, University of South Carolina, Columbia, SC (1998)
- NSF/AGI Earth Science Education Working Group, Colorado School of Mines, Golden, CO (1998)
- Member, NSF DUE CCLI Review Panel (1999)
- TAMU Tenure & Promotion Committee (circa 2001)

Number One Quote from the 1998 IDIG "No, it is even more insidious than that...."

First Activity: Why are you here?

Group discussion

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Overview of Assessment

Assessment of Learning

"Assessment is the ongoing process of establishing

- clear, measurable expected outcomes of student learning,
- ensuring that students have sufficient opportunities to achieve those outcomes,
- systematically gathering, analyzing, and interpreting evidence to determine how well students learning matches the expectations and
- using the resulting information to understand and IMPROVE student learning."

Suskie, L. (2009) Assessing student learning: A common sense guide. San Francisco: Jossey-Bass.

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Choosing Assessment Methods

- What is purpose of assessment?
 - Formative
 - Summative
- Does assessment align with learning goals?
- How will assessment show:
 - What students have learned?
 - That students have progressed?
- Will multiple assessment forms be used?

Steps in Assessment Design

- Clearly state purpose for assessment:
 - Content goals (whether & how much)
 - Process goals (diagnose, plan)
- Define what to assess:
 - Cognitive skills
 - Social & affective skills
 - Metacognitive skills reflect, evaluate
 - Problems solving skills
 - Concepts & principles to be able to apply
 - Knowledge transfer
- Match assessment method to achievement purpose above

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Steps in Assessment Design

- Match tasks to intended learning outcomes
 - Outcomes to be measured
 - Assessment administration process
 - Actual question(s)/problem/prompt
 - Scoring
- Specify criteria for judging student performance
- Develop reliable rating process, train raters
- Use test results to refine assessments

NCREL. nd. Select or design assessments that elicit established outcomes. http://www.ncrel.org/sdrs/areas/issues/methods/assment/as7sele2.htm

Assessment of Learning

Educational assessment rests on three pillars:

- model of how students represent knowledge and develop competence in the subject domain
- tasks or situations that allow one to observe students' performance
- interpretation method for drawing inferences from the performance evidence

(Pellegrino et al., 2001)

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

3 Ps: Understanding the Nature of Learning

Psychology - Learning

Cognitive Science, Information-processing, Social psychology, Activity theory

Philosophy - Knowledge

Epistemology; Science Studies; Models, Argumentation; (ETHICS)

Pedagogy – Teaching Practice

Inquiry Learning; Problem-based Learning; Community of Learners; Model-based Learning; Design Principles, Preparation for Future Learning

History of Thinking about Human Mind

- Differential Perspective
 - Individual, Mental Tests separate from academic learning selecting and sorting
- Behavioral Perspective
 - Stimulus/Response Associations rewarding and punishing
- Cognitive Perspective
 - Prior Knowledge, expert/novice, metacognition (thinking about thinking and knowning)
- Situative Perspective
 - Sociocultural, language, tools, discourse

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Psychology & Education

Structured Knowledge
Prior Knowledge
Metacognition
Procedural Knowledge in Meaningful Contexts
Social participation and cognition
Holistic Situation for Learning:
Make Thinking Overt
(Glaser, 1994)

Types of Knowledge

- Declarative (what);
- Procedural (how);
- Schematic (why);
- Strategic (where, when)
- Conceptual, Epistemic, Communicative or Social
- Bloom's Taxonomy
 - Knowledge, comprehension, application, analysis, synthesis, evaluation

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY

Nature of Science

- Science is about testing hypotheses and reasoning deductively from experiments
 - Hypothetico/Deductive Science
- Science is Theory building and revision
 - Contexts of Generation and Justification
- Science is Model building and revision
 - Models stand between Experiment and Theory

Performances - Practices

Piano

- Finger/hand strength and flexibility
- Read muscial notation
- Musical phrasing, playing with feeling
- Creative musicality

Science

- Building conceptual claims, meanings
- Evaluating conceptual claims, meaning
- Seeking evidence
- Seeking explanations
- Communicating

2012 GSA/NAGT Short Course

GEOLOGY & GEOPHYSICS AT TEXAS A&M UNIVERSITY Assessment & Learning

Nature of Learning

How People Learn: Brain,
Mind, Experience, and
School: Expanded Edition
http://fermat.nap.edu/catalog/9853.html

- Humans are goal-directed agents who actively seek and use information.
- Prior knowledge, misconceptions, skills, beliefs and concepts significantly influence what humans notice about the environment, how they organize knowledge and use knowledge.
- Competence in an area of inquiry requires a deep foundation of factual knowledge, an understanding of facts and ideas within the context of a conceptual framework, and an organization of knowledge that guides retrieval and application.
 - People can take control of their learning through active learning that is guided by metacognitive strategies and social interaction.

Activity:

Seeking Change

Group discussion: What would you like to change?