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Introduction 
 Geology students generally make a close approach to the exponential function in 
Geology 1 when they learn about radioactive isotopes and geochronology. 

The mathematics of the subject is typically presented in a few sentences 
something like the following.  The half-life is the time that it takes for half of a given 
quantity of a given radioactive isotope ("parent") to convert to a radiogenic isotope 
("daughter").  For example, if you start with, say, eight million atoms of radioactive 
isotope P (for parent), and the half-life of P→D (D for daughter) is one thousand years, 
then, after one thousand years, you will have four million atoms of P.  Similarly, after 
two thousand years, you will have two million atoms of P; after three thousand years, one 
million atoms of P; and so on.  After nine thousand years you will have 15,625 atoms of 
P, or 1/1024 (about 0.1 percent) of the number you started with.  

Commonly the succession of fractions (i.e., 1/2, 1/4, 1/8, 1/16, …) is shown on a 
graph such as Figure 1.  The phenomenon is labeled, appropriately enough, an 
exponential decay. 
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Figure 1.  Graph of exponential decay: fraction of parents 
remaining after successive half-lives. 

 
 The equation corresponding to Figure 1, however, is generally not given in 
Geology 1.  Nevertheless, it is straightforward: 
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where P is the number of parent atoms after an elapsed time, t; P0 is the number of parent 
atoms in the beginning ("time-zero"); and t1/2 is the half-life.  For example, with P0 = 
8,000,000, t1/2 = 1,000 years, and t = 9,000 years, P works out to be 15,625, as you can 
check with your calculator. 
 The equation works because the exponent, t/t1/2, gives the number of half-lives 
that have elapsed during the time, t.  In Figure 1, only integer values of t/t1/2 are plotted, 
but the equation holds for fractional numbers of half-lives as well. 

 The 1/2 is in the parentheses, because we a talking about half-lives.  If we were 
talking about third-lives, the appropriate equation would be 
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where t1/3 is the duration of a third-life.  The 1/2 raised to the t/t1/2 power gives the 
fraction (P/P0) of the original parents remaining after t years have elapsed.  Clearly, this 
fraction must be the same as 1/3 raised to the t/t1/3 power. 
 Equation (1) is a gateway to a lot of useful mathematics.  In particular, it provides 
access to the exponential function, the subject of this chapter. 
 
Getting to the Exponential Function. 
 Let's apply some algebra to Equation 1.  Take the natural logarithm of both sides: 
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Recall that the logarithm of a number is minus the logarithm of its reciprocal: 
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Combining Equations 3 and 4 then produces: 
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Now, both ln(2) and t1/2 are constants.  That is, t1/2 is constant for the reaction that 

we are considering; t1/2 would have some other value if we were considering some other 
reaction.  Therefore, the ratio of ln(2) and t1/2 must also be a constant (again, specific to 
this reaction).  Call this constant ratio, λ.  Thus: 
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The constant λ is known as the decay constant.  It has dimensions of time-1, written [T-1]. 

Now combine Equations 5 and 6: 
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Taking the antilogarithm of both sides of Equation 7 produces: 
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Equation 8 is the usual expression for exponential decay.  It is an alternative to Equation 
1. 
 Exponential growth is the opposite of exponential decay.  For example, consider a 
small population of bacteria allowed to multiply without constraint.  The number of 
bacteria after an elapsed time is 
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where BB0 is the initial number of bacteria, and β is the growth constant [T ].  Such a 
population doubles after a specific amount of time, t

-1
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The equation analogous to Equation 1 is: 
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For example, if you start with 100 bacteria, and they double every day, then the number 
of bacteria would be as follows: after 1 day, 200; after 2 days, 400; after 3 days, 800; 
after 4 days, 1600; after 7 days, 12,800.   

Exponential growth is also known as geometric growth. Recalling Computational 
Geology 3 (CG-3, "Progressing Geometrically," November 1998), the numbers of 
bacteria (200, 400, 800, etc.) form a geometric progression.  Meanwhile, the numbers of 
days (1, 2, 3, etc.) form an arithmetic progression.  In general, Equations 8 and 9 can be 
visualized as functions that call for a pairing of geometric progressions against arithmetic 
progressions.  For every arithmetic progression of the independent variable (t, in these 
examples), there is a corresponding geometric progression of the dependent variable (P 
or B, here).  The factor by which the dependent variable increases (or decreases) is 
determined by the incremental change in the arithmetic progression and the rate constant 
(λ or b, here).   

 



Equations 8 and 9 are variations on the general form, 
 

   ,        (12) xey =
 
where e is the base of the natural logarithms.  Specifically, Equation 8 results from 
Equation 12 by letting y = P/P0 and x = -λt.  Similarly, Equation 9 results from Equation 
12 by letting y = B/BB0 and x = βt. The function, y = e  is the exponential function.  It is 
unique among functions: it is the only function that, when differentiated, reproduces 
itself. 

x

  
Appreciating Euler 
 Leonhard Euler (1707-1783) was by all accounts the most prolific mathematician 
of all time.  Born in Basel, Switzerland, he completed university there at the age of 15.  
Mathematically, he was a descendent of Gottfried Wilhelm Leibniz (1646-1716), the 
Continental inventor of calculus (see CG-5, "If Geology, Then Calculus," March 1999).  
The lineage went through the famous Bernoulli brothers – James (or Jacob, 1654-1705) 
and John (Johann, 1667-1548).  Both Bernoullis collaborated with Leibniz.  Euler's 
father, a clergyman, studied mathematics under James, and young Euler was tutored by 
John.  

Two of John's sons (Nicholas and Daniel) recommended their friend Euler for 
appointment at their university, the St. Petersburg Academy of Sciences, which was 
founded by Peter the Great of Russia at the urging of Leibniz.  During political 
uncertainties in Russia concerning the succession to the throne, Euler decided to end his 
stay at St. Petersburg (1727-1741).  He accepted an invitation of Frederick II of Prussia to 
join the Berlin Academy of Sciences, which had been founded by Frederick I on the 
advice of Leibniz.  After Berlin (1741-1766), Euler returned to St. Petersburg (1766-
1783) at the invitation of Catherine the Great.   

By 1771, Euler was almost totally blind.  He performed the detailed calculations 
for his work in his head, and he dictated his papers.  His collected works consist of more 
than seventy volumes. 
 To set the time frame, this was roughly the time of James Hutton (1726-1797). 
Euler's life span was very similar to Benjamin Franklin's (1706-1790). 
 Euler's work established the huge branch of mathematics known as analysis.  
Simply described, analysis is the mathematics of functions.  It includes such curricular 
subjects as differential and integral calculus, differential equations, complex variables, 
potential theory, Fourier analysis, and the calculus of variations.  Other branches of 
mathematics are such subjects as number theory, geometry, and algebra. 
 Euler established analysis in three texts: Introduction to Analysis of the Infinite (2 
vols., 1748); Methods of the Differential Calculus (1755); Methods of the Integral 
Calculus (3 vols., 1768-1770).  The three texts were written in Latin.  His famous 
Introductio was the precalculus text, and in it he defined the concept of function (the 
word was first used by Leibniz), the modern concept of logarithm (see CG-3), and the 
exponential function.  His definition of a function was: 
 

A function of variable quantity is an analytical expression composed in any way from this 
variable quantity and from numbers or constant quantities. 



 
Thus, to Euler, a function was a formula consisting of variables and constants.  One of 
these, which he wrote as lx, he defined as the exponent y such that a y = x.  This, of 
course, is logax, the logarithm of x with the base a.  In the hands of Euler, the exponential 
function and e, the base of natural logarithms, followed immediately.   
 
Euler's e and ex 

 If you have ever wondered where e came from, this is it.  Let x be a finite number, 
and let ε be an infinitely small number.  Then N = x/ε must be an infinitely large number.  
Also, 
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We know that a0 = 1.  Then, because ε is a number, it must be that 
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where k is also some number.  The objective now is to explore this k. 
 Using the infinitely large N from Equation 13, 
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Then, with Equations 13 and 14, Equation 15 becomes: 
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The next step is to expand the right side of Equation 16 using the binomial series 

(which was discovered by Newton in1665): 
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Rewriting Equation 17, 
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Now, because N is infinitely large, N = N −1, and N = N −2, etc., so Equation 18 
becomes: 
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This reveals that there is a relationship between the arbitrary base, a, and the number k in 
Equation 14.  Thus, letting x = 1, Equation 19 becomes: 
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In other words, a is a function of k.  
  To explore these relationships further, one can simply construct Table 1 with the 
rows corresponding to the terms in Equation 19, and the columns corresponding to 
various values of kx.  The first choice in Table 1 is kx = 1.  The sum of the first 10 terms 
is shown.  Euler chose to call the infinite sum for this choice e.  In other words, Euler 
called the sum of Equation 20 e for the special case of k = 1; i.e., let a = e for k = 1 in 
Equation 20.  He calculated the sum to 23 places.  Our sum with ten terms gets it correct 
to 7 significant figures (e=2.718281828…).  The other columns show that different 
values of k result in different values of a; hence, a is a function of k. 
  
 

 kx = 1 kx = 2 kx = 2.3026
(kx)0/0! = 1 1 1
(kx)1/1! = 1 2 2.3026
(kx)2/2! = 0.5 2 2.650983
(kx)3/3! = 0.166666667 1.333333 2.034718
(kx)4/4! = 0.041666667 0.666667 1.171285
(kx)5/5! = 0.008333333 0.266667 0.5394
(kx)6/6! = 0.001388889 0.088889 0.207004
(kx)7/7! = 0.000198413 0.025397 0.068092
(kx)8/8! = 2.48016E-05 0.006349 0.019599
(kx)9/9! = 2.75573E-06 0.001411 0.005014

 
sum= 2.718281526 7.388713 9.998697

 
Table 1.  First ten terms of Equation 19 for three 
choices of kx.  

  
 
 After letting a = e for k = 1, we can rewrite a number of the preceding equations. 
Equation 20 becomes: 
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Equation 19 becomes 
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For example, with x = 2, one gets e2, which is the sum in column 2 of Table 1.  [You can 
also note that the kx = 2 column produces e2.303, or 10; in other words, ln(10) = 2.303.] 



 In addition, Equation 16 becomes 
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where, recall, N is an infinitely large number.   

In derivations of post-Euler analysis, one can no longer get away with "infinitely 
large numbers", and Equation 23 is now stated in terms of a limit: 
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Letting x = 1 in Equation 24, we also have for e: 
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All this, as you have seen, follows algebraically from the definition of logarithm. Euler's 
Introductio was a precalculus text. 
 But the extraordinary nature of ex is revealed by calculus. To see it, differentiate 
Equation 22: 
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 Completing the term-by-term differentiation produces: 
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In other words, from Equations 22 and 26, 
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The derivative of the exponential function is the exponential function.  The consequences 
of this fact are enormous. 
 
Going Beneath the Exponential Function 
 To see the importance of Equation 27, consider the following function: 
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From Equation 22, this function can be expanded as: 
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Differentiating Equation 29, 
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which simplifies to 
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Now, recognize the function in parentheses as eαx, and so 
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Finally, combine Equations 28 and 30: 
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which is the very important result.  You may appreciate it more, if it is rewritten with the 
independent variable as t, for time: 
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In other words, the function  
 

tAey α=         (33) 
  

has the property that its rate of change is directly proportional to the amount of y that is 
present. The function given in Equation 33 is geometric growth (recall Equation 9).  The 
"rate equation" (Equation 32) for geometric growth is simply that the growth rate is 
proportional to amount.   

Similarly, the function 
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which is the equation of exponential decay (recall Equation 8), is underlain by 
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Equation 35 is the rate equation for exponential decay.  If something diminishes with a 
constant half-life, its rate of decay is proportional to the amount that is present. 
 
Speaking of Radioactive Decay 
 Is this a reasonable result?  I mean, is it reasonable that a radioactive isotope, 
which has a constant half-life, would decay according to Equation 35?  Let's take an 
example.   
 The half-life of the reaction 14C → 14N (the decay of radiocarbon) is 5,730 yr, as 
you probably know.  From Equation 6, the decay constant (λ) for this reaction is: 
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From Equation 8, the number of 14C atoms remaining in, say, a sample of plant carbon as 
a function of time is then: 
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where the number P0 is set at the time the plants die.  This means that the number of 14C 
atoms present in the sample decreases by the rate reaction: 
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Equation 38 can be rearranged to produce: 
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The left side of Equation 39 has an important meaning.  The numerator (dP) is the 
number of 14C atoms in the sample that become 14N atoms in the interval of time dt. The 
denominator (P) is the number of 14C atoms present during that time interval (which is 
tiny enough that we don't worry about the fact that P changes during the time interval).  
The ratio dP/P is the probability that any one of the 14C atoms becomes a 14N atom 
during the time interval.  Equation 39, therefore, says that the probability that a 14C atom 
becomes a 14N atom during any given year is 1.21×10-4, or 0.012 percent. 
 As you probably know from Geology 1, the conversion of a 14C atom to a 14N 
atom occurs when a neutron in the 14C nucleus throws out a β- particle. In such an event, 
the neutron becomes a proton, the atomic number increases (hence the carbon atom 
becomes a nitrogen atom), and the mass number is unchanged (at 14).  This is called β−-
decay. 



  87Rb is another atom with an unstable nucleus in which a neutron emits a β- 
particle.  The decay constant for the reaction 87Rb→87Sr is 1.42×10-11 yr-1, which means 
that the probability is 1.42×10-9 percent that any given 87Rb atom would emit a β- particle 
in any given year.  Clearly, it is much more unlikely that a β- particle is ejected from a 
87Rb nucleus than from a 14C nucleus.  As a result, the half-life of a collection of 87Rb 
atoms is much longer than the half-life of a collection of 14C atoms.  From Equation 6 and 
the λ for 87Rb decay, the half-life is 48.8 billion years. 
 It is important to recognize that the probability dP/P pertains to a huge quantity of 
P atoms. It is these huge numbers that assure the reliability of the mathematical rate law 
underpinning Equations 1 and 8. Here is how G.B.Dalrymple explains it in The Age of the 
Earth (Stanford University Press, 1991, p. 83-84): 
 

 Radioactive decay is most easily understood as a statistical process in 
which each atom of a given radioactive nuclide has exactly the same probability 
of decaying in some particular period of time as any other atom of that nuclide…. 

Because each atom decays independently of all others, the more atoms 
there are, the more decays occur, and so the number of atoms that decay per unit 
time is directly proportional to the number of atoms of that species present…. 

Because decay is a statistical process, it is not possible to tell when any 
particular atom will decay.  For a small number of atoms, therefore, it is virtually 
impossible to determine the exact number of decays in a given time…. 
Fortunately, the numbers of atoms in even small amounts of matter are very large  
– as little as 0.00001 gram of potassium contains 150,000 trillion atoms! – so the 
statistical nature of radioactive decay is of no practical concern to the accuracy of 
radiometric dating. 

 
Clearly, the eight million radioactive parent atoms mentioned at the beginning of this 
article are only to illustrate the mathematics.  The number needs to be many orders of 
magnitude larger to represent the actual application.  The same is true of the numbers of 
bacteria mentioned in connection with Equation 9. 
 As noted in the above excerpt, the decay of one atom is independent of the decay 
of the others around it.  In other words, the probability that a given atom ejects a β- 
particle (or decays by one of the other decay processes) in a given amount of time is not 
affected by the number of surrounding unstable atoms.  If this were not so, then the decay 
constant and half-life of the reaction would vary with P.  For example, if the probability 
of an atom's decay were increased by the presence of nearby unstable atoms, then the 
probability of the atom's decay would decrease with time as the pile of unstable atoms 
converted to stable ones.  Accordingly, the decay constant would decrease with time, and 
half-life would increase with time.  In such a case, the mathematics of constant half-lives 
would result in a confusion of different ages calculated from different isotopes.   
 That the half-life is independent of time (or extent of reaction) is only one way 
that the rate constant and half-life are constant.  The mathematics of constant half-lives 
also produces consistent results on rocks that have experienced diverse histories.  Thus 
the rate constants are not affected by changing physical or chemical conditions.  
Temperature, pressure, and chemical reactions do not affect the probability that a given 
atom decays in a given amount of time.  It is in this sense, also, that the rate constant and 
half-life are a constant for any given reaction.  



 If the probability that a P atom becomes a D atom were affected by the amount of 
P atoms present, the amount of other atoms present, the temperature, pressure, or 
chemical reactions, then radiometric dating would be a mess.  The mathematics, too, 
would be unpleasant.  The decay rate would not be proportional to the amount of parent 
isotopes present; the rate constants would not be constant; the half-lives would not be 
constant; Equations 1 and 8 would not hold. 
 
Going the Other Way 
   Equation 38 shows the derivative dP/dt on the left side of the equation and the 
function P(t) on the right side of the equation.  In Equation 39, the derivative has been 
broken up: the dP part of it remains on the left, and the dt part of it has been moved to the 
right.  This is an important step. 
 As discussed in CG-5, the notation dy/dx dates to Leibniz's calculus and has been 
called the differential coefficient. Leibniz thought of dy/dx as the ratio of two very tiny 
quantities: dx as a tiny change in the independent variable, and dy as the change in the 
dependent variable brought about by the tiny change in the independent variable.  By this 
view of the derivative as a ratio, the two parts can be separated.  As it turns out, this is the 
critical first step in solving many rate problems. A rate problem is one in which you have 
an equation like Equation 35 and you want to find the function, y, that satisfies that 
equation.  In other words, given Equation 35, how do you find Equation 34? 
 Starting with Equation 35, the first step is to "break up the derivative" and move 
the dt to the other side, and move the y to the left: 
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This step, appropriately enough, is known as separating variables.   Next integrate both 
sides: 
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Integrating the left side produces: 
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where cL is the constant of integration obtained from integrating the left side of Equation 
41.  Integrating the right side of Equation 42 produces: 
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where cR is the constant of integration.  Then combining Equations 41, 42, and 43 
produces: 
 



  cty +−= αln  ,       (44) 
 
where c is a constant, namely cR − cL. 
 Now the problem is to find c.  This requires additional information than that 
contained in Equation 35.  You can find c, if you know the value of y at some time, t.  
Let's say that the time for which you know y is time zero (i.e., t = 0), and that the value of 
y then is A; that is, 
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(The vertical line is read "at"; therefore, Equation 45 is read "y at t = 0 equals A.")  To 
find c, simply combine Equations 44 and 45; that is, let t = 0 and y = A in Equation 44: 
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From this we clearly have found c: 
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 To complete the solution, combine Equations 44 and 47: 
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Rearrange: 
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Exponentiate both sides: 
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Simplify: 
   .        (51) tAey α−=
 
This result is the same as Equation 34.  Thus, we have gone from the rate equation 
(Equation 35) back to the function (Equation 36) that is underlain by that rate function. 
 
Arriving at Differential Equations 
 The process that we have just worked through is one of the most important in 
using calculus to solve problems.  The process starts with an equation that contains one or 
more derivatives.  Such an equation is called a differential equation.  As illustrated by 
this example, the solution of a differential equation is a function (Equation 51).  This 
makes solving differential equations something different than solving algebraic equations 
(such as x2 + 5x + 6 = 0).  When you solve an algebraic equation, you find one or more 



numbers that satisfy the equation.  When you solve a differential equation, you find a 
function that satisfies the equation.  
 Part way through our example (solving Equation 35), we needed to bring in 
additional information to get the final solution (Equation 51).  The additional information 
was the value of the function at a specified value of the independent variable (Equation 
45).  This additional information is known as a boundary condition.  Because solving 
differential equations involves integration, and integration produces constants of 
integration, it is impossible to work out the complete solution without boundary 
conditions.  If your differential equation involves a function of a single variable (called 
an ordinary differential equation, which is the case for Equation 35), you need one 
boundary condition for each time that you integrate.  If, for example, your differential 
equation contains the second derivative of the unknown function, you will need to 
integrate twice, and so you will need two boundary conditions; such equations are called 
second-order differential equations.  The example of Equation 35 is a first-order 
differential equation, requiring only one boundary condition.  Because the independent 
variable is time, and the boundary condition was set at t = 0, it is called an initial 
condition. 
 
Concluding Comments 
 Geology is about rates and time.  A differential equation is an equation expressing 
rates.  Solving it produces a function that describes how the quantity in question varies 
with time. Solving differential equations, therefore, allows one to explore the 
consequences of making various assumptions about rates.  Clearly such deduction – a 
form of modeling – is of interest to geologists. 
 One of the simplest assumptions, or models, that can be made is that the rate of 
change of a quantity is directly proportional to the amount of the quantity.  For reasons 
explained by Dalrymple in the above excerpt, there are good a priori reasons to think that 
that simple statement about rates would apply to the phenomenon of radioactive decay.  
The consequence of that rate law's applying to radioactive decay is that the quantity of 
parents as a function of time is described by a simple exponential function.  
 For many other phenomena, other statements about rates are reasonable.  These 
produce other functions.  In many cases, these more-complicated functions contain the 
exponential function as a part.  When one goes from rates to functions, one encounters 
the exponential function repeatedly.  There is no avoiding Euler's e or his ex.  
 
Sources 
 The sources for the historical information on Leonhard Euler were A History of 
Mathematics, An Introduction by Victor J. Katz (2nd ed., Addison-Wesley, Reading MA, 
1998) and The Historical Development of the Calculus by C.H. Edwards, Jr. (Springer-
Verlag, New York, 1979).  Chapter 10, "The Age of Euler", in The Historical 
Development is particularly instructive.  The derivation of Euler's e and ex here closely 
follows the section entitled "Euler's exponential and logarithmic functions" (p. 272-274). 
  


