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Introduction 
 The Computational Geology column of the last issue concerned problem solving.  We 
worked through three elementary geological-mathematical word problems in some detail.  
Although these problems were not designed to bring up the subject of unit conversions, it arose 
anyway.  The fact is, it is difficult to consider any interesting problem without having to convert 
units. 
 In my experience, nothing gives students more trouble than unit conversions.  More 
errors seem to be made in unit conversions than in any other part of geological-mathematical 
problem solving.  These errors can produce outlandish results.  For example, some students 
calculate that groundwater sometimes travels at the speed of sound, or that the water table in 
Florida can be found at an elevation exceeding that of Mt. Everest.  And then they get annoyed 
with me for not giving them partial credit for such answers!  My position on the matter is that 
there is no point in knowing the right equation to use if you cannot deal properly with the 
numbers that go into it or come out of it. In other words, you will not get off square one in 
geological-mathematical problem solving if you cannot convert units, reliably without error. 
 My experience is by no means unique.  One can get a sense of the ubiquity of unit-
conversion difficulties in college classrooms from the number of course-specific Web sites that 
address the subject.  They are particularly prevalent at sites associated with physics, chemistry, 
astronomy and engineering courses, but they are also beginning to appear in Web materials of 
introductory geoscience courses as these courses become more quantitative. 
 No one should be surprised, however, to hear that science professors throughout the 
country find that students have difficulty with unit conversions.  Unit conversions are simply an 
exercise in applied algebra.  People coming out of high school today are notoriously poor at 
algebra.  It is well known now that, statistically, they are among the world's worst at algebra. 
More about that later.  
 
About Algebra 
 In 1993, there was a conference in Washington D.C. on reforming the learning and 
teaching of algebra from kindergarten through graduate school.  Called "The Algebra Initiative 
Colloquium", this conference resulted in a two-volume set of papers (Lacampagne et. al, 1993). 
The lead paper, the text of the keynote talk, was by Victor J. Katz, author of a popular textbook 
on the history of mathematics.  Katz started his talk with the question, What is algebra?  He 
noted that there is usually no definition in twentieth century texts.  It is apparently assumed that 
everyone knows what algebra is.   
 Intrigued by the question, I consulted a mathematical dictionary.  I was told that algebra 



is the branch of mathematics that deals with the general properties of numbers and the 
generalizations arising therefrom.  That definition didn't do much for me. 
 I asked my Computational Geology class the same question.  Without hesitation and with 
universal agreement, the class responded with, "It's finding unknowns.  It's solving equations".  
  According to definitions given in Katz's paper, my class is right in line with eighteenth 
century textbooks (which is fine with me). According to Maclaurin's A Treatise of Algebra in 
Three Parts (1748, p. 1), algebra is "a general method of computation by certain signs and 
symbols which have been contrived for this purpose and found convenient."  According to 
Euler's Complete Introduction to Algebra (1767, p. 186), "Algebra has been defined as the 
science which teaches how to determine unknown quantities by means of those that are known." 
 (Quotations are from Katz's article, "The development of algebra and algebra education", in 
Lacampagne et. al, 1993). 
 There was a long history of algebra before Colin Maclaurin (1698-1746) and Leonhard 
Euler (1707-1783).  The history goes back to before there were symbols to manipulate. The 
earliest text, according to Katz, was by Muhammad ibn Musa al-Khwarizmi (c. 780-850) of 
ninth century Baghdad: The Condensed Book on the Calculation of al-Jabr and al-Muqabala. 
For a definition of Islamic al-jabr and al-muqabala, Katz used the writings of al-Khayyami 
(1048-1131; better known in the West as Omar Khayyam, author of the Rubaiyat): "One of the 
branches of knowledge needed in that division of philosophy known as mathematics is the 
science of al-jabr and al-muqabala which aims at the determination of numerical and geometric 
unknowns."   
 "Algebra", of course, is derived from "al-jabr". As noted by Katz, algebra has been about 
solving equations right from the first use of the word.  The task itself is much older. Katz spoke 
of the algebra in the Rhind papyrus of Egypt, about 1650 B.C. 
 Today, our algebra of finding unknowns by manipulating equations is commonly called 
school algebra by mathematicians.  This differentiates it from modern or abstract algebra. 
 
Using Al-Jabr 
 Al-jabr and al-muqabala of the Islamic writers referred to specific operations.  Al-jabr 
was the task performed to go from the first to the second of these equations (these are Katz's 
examples): 
 
  3x + 2 = 4 - 2x ,        (1) 
  5x + 2 = 4 .      .   (2) 
 
Al-jabr, therefore, was the transposition of a subtracted quantity from one side to the other side 
of an equation by adding it to both sides.  Al-muqabala was the task that changes Equation 2 to:  
 
  5x = 2 .      .   (3) 
 
Thus al-muqabala was performed by subtraction of equal amounts from both sides to reduce a 
positive term.  Note that al-jabr and al-muqabala are examples of the Fundamental 
Commandment of School Algebra (FCOSA): Do to both sides equally.  
 
 Of particular interest to me a thousand years later is that these algebraic operations were 
not performed with equations and symbols.  The textbooks of al-Khwarizmi and Omar Khayyam 



consisted of step-by-step instructions, in words, of how to solve particular problems.  For 
example, in the spirit of these Islamic mathematicians, here is how a classroom problem of today 
would be treated in the so-called rhetorical algebra that they used: 
 

Suppose the temperature is 20°C.  What is the temperature in degrees Fahrenheit?  The 
solution is this: You take the 20. This you multiply by nine; the product is 180.  Divide 
this by five; the result is 36.  To this you add 32; the sum is 68.  This is the temperature in 
degrees Fahrenheit that you sought. 

 
Here is an example from a geology classroom: 

 
Suppose the tectonic plate is moving at 5 cm/yr.  What is this speed in miles per millions 
of years (mi/m.y.)?  The solution is this: You take the 5 cm/yr.  This you divide by 
100,000 cm/km; the result is 0.00005 km/yr.  Multiply this by 1,000,000 years per m.y.; 
the product is 50 km/m.y.  Divide this by 1.6 km/mi; the product is 30 mi/m.y.  This is 
the speed of the tectonic plate in the units that you sought.  

  
 These sets of instructions are algorithms.  An algorithm is a step-by-step procedure for 
solving a problem.  Appropriately, the word has a connection to al-Khwarizmi.  It comes from 
Algoritmi dixit, the first words of Liber algoritmi de numero Indorum (generally referred to as 
Liber algorismi), the Latin translation of al-Khwarizmi's text on arithmetic.  The Liber algorismi 
is the work that brought our Hindu-Arabic number system to the West.  Algortmi dixit means "al-
Khwarizmi says".  
 
  
Al-Jabr and Unit Conversions 
 These two examples of rhetorical algebra involve unit conversions, the subject of this 
column.  No one would expect to use a manual written in that style anymore.  Nevertheless, it is 
very similar to an approach that is commonly used for unit conversions.  Many conversion 
tables, especially in engineering references, are written in the style of Table 1.  Such tables have 
columns indicating (1) the target units, (2) the given units, and (3) the conversion factor. 
 

Conversion 
Number 

To obtain the 
number of: 

Multiply the 
number of: 

By: 

1 centimeters meters 100 
2. millimeters meters 1000 
3 microns millimeters 1000 
4 meters kilometers 1000 
5 feet meters 3.281  
6 meters feet 0.3048 
7 centimeters feet 30.48 
8 kilometers miles 1.609 
9 miles kilometers 0.6214 
10 feet miles 5280 
11 centimeters inches 2.54 
12 inches centimeters 0.3937 



Table 1.  Conversion table for some lengths  
 
 To see the similarity to Algortmi dixit, consider conversion number 1.  The line in the 
table says, "To obtain the number of centimeters, take the number of meters and multiply by 
100."  
 Such tables are straightforward and easy to use.  Their main drawback is finding them 
when you need them.  Fortunately, you don't have to. 
 
Symbolic Algebra  
 Table 1 differs from the two examples of rhetorical algebra in a fundamental way.  It 
speaks of meters and centimeters, in general, not of particular numbers of them.  The early style 
– not only of the Islamic scholars but also the author of the Rhind papyrus – was  to give 
examples.  It was up to readers to generalize.  Given a new problem, the reader was supposed to 
apply the same algorithm, starting with a new number and tracing out a new succession of 
numbers through the cookbook procedure. 
 A huge step was made when the numbers of particular examples were replaced by 
symbols.  Rhetorical algebra was replaced by symbolic algebra, in which symbols are used in 
place of numbers. The initiation of symbolic algebra was one of the mathematical achievements 
of Renaissance Europe.  One of the important innovators was the Frenchman, Fraçois Viète 
(1540-1603), a contemporary of Galileo (1564-1642).  Viète, whose main job was a lawyer and 
legal counselor for French kings, is considered by mathematics historians to be the central figure 
in the transition of algebra from an assortment of algorithms to an "analytical art". 
 To illustrate early symbolic algebra, here is the way that Viète would write an equation in 
his treatises, which are collectively known as The Analytical Art, at the turn of the seventeenth 
century: 
 
 1QC - 15QQ + 85C - 225Q + 274N aequatur 120 .     (4a) 
 
In this equation "aequatur" means "equals"; N means "numero" (number; unknown); Q is N 
multiplied by itself (N-squared); C is N-cubed. In modern symbols, this equation would be 
written 
 
 x5 − 15x4 + 85x3 − 225x2 + 274x = 120.   .   (4b) 
 
It was the great French mathematician René Descartes (1596-1650) who introduced the 
convention of using letters near the end of the alphabet for unknowns and attaching to them 
superscripts of Hindu-Arabic integers to indicate the number of times they are multiplied 
together. 
 Viète also was the first to use letters to represent general coefficients.  Descartes adopted 
the plan of using letters at the beginning of the alphabet for these general coefficients.  John 
Wallis (1616-1703), an influential professor at Oxford, came up with fractional exponents.  By 
the time of his writings at the end of the seventeenth century, the general form of equation 4 
would be written 
 
 x5 - ax4 + bx3 + cxx + dx = 0 .        (4c) 
 



 Stating an equation in a form such as 4c allows it to be studied in generality.  Symbols 
give immense power to algebra. 
 
Equations of Unit Conversions 
 The equations that are used in converting units are not as complicated as Equation 4. For 
example, the conversion from Centigrade to Fahrenheit illustrated in the first example of 
rhetorical algebra is done by 
 
 F = 9C/5 + 32 ,         (5) 
 
where F indicates the number of degrees Fahrenheit and C represents the number of degrees 
Centigrade.  To use this equation, you take the number of degrees Centigrade, substitute that 
number for C, and perform the operations indicated on the right side of the equation; the result is 
the number of degrees Fahrenheit.  This step-by-step procedure is exactly the same as that 
spelled out in the rhetorical example.  Letting C = 20°, one calculates that F = 68°. 
 An obvious benefit to the symbolic style is that it is evident how to go the other way, for 
example, from degrees Fahrenheit to degrees Centigrade. One does this by applying the FCOSA. 
 First, subtract 32 from each side: 
  
 9C/5 = F − 32    . 
 
Then multiply each side by 5/9: 
 
 C = 5F/9 − 17.78  .         (6) 
 
For example, given that F = 68o, C comes out to be 20o. 
 
 The equations converting between Centigrade to Fahrenheit have the form: 
 
 y = ax + b,          (7) 
 
which is the familiar linear function.  The equation that applies to most unit conversions is even 
simpler: 
 
 y = ax,            (8) 
 
which says that one unit is simply a multiple of the other. 
 For example, consider the first line of Table 1: "To obtain the length in centimeters, 
multiply the length in meters by 100".  Clearly, this means that a meter is 100 times longer than a 
centimeter.  The appropriate equation relating them, therefore, is: 
 
 1 m = 100 cm.           (9) 
 
 It is crucial that you notice that there is a big difference between Equations 5 and 9, not 
including their difference in form.  The difference is in what has been substituted for the x's and 
y's.  In the case of Equation 5, the x and y of the general form (Equation 7) are replaced by the 



number of degrees.  In the case of Equation 9, the x and y of the general form (Equation 8) are 
replaced by actual lengths (x = 1 cm, and y = 1 m).  The F and C of Equation 5 are variables, 
meaning they can be replaced by any numbers.  The lengths indicated by letters in Equation 9 are 
not variables; they are fixed, one as a standard length, and the other as a defined fraction of that 
standard length.  Equation 9 says that the size of the meter is 100 times the size of the centimeter. 
 Equation 5 does not say that the size of a degree F is 32o larger than nine-fifths the size of a 
degree C. 
 The difference between Equations 5 and 9 is sufficiently important that it is worth 
belaboring a little.  Look at what happens if you think of the Equation 9 as m = 100c, where m is 
the number of meters, and c is the number of centimeters. Suppose you measure a length to be 20 
cm, and you want to convert that measurement to meters.  Plugging the 20 into 100c produces m 
= 2 000.  So, you would be converting a length of 20 cm (less than a foot) to 2 km (more than a 
mile).  That would certainly make a big difference in the answer to whatever question 
necessitated the conversion of centimeters to meters.   
 You can avoid this kind of blunder by never omitting the "1" in a unit-conversion 
equation when the equation refers to sizes of the units (which is nearly all the cases).  Table 2 
lists some common length conversions in equation form.  Some are translations from specific 
lines of Table 1. 
 

Conversion 
Number 

    

1 1 m = 100 cm  
3 1 mm = 1000 µm  
5 1 m = 3.281 ft  
6 1 ft = 0.3048 m  
7 1 ft = 30.48 cm  
8 1 mi = 1.609 km  
11 1 in = 2.54 cm  
13 1 ft = 12 in  
14 1 nm = 10-9 m (nanometers) 
15 1 Å = 10-10 m (Angstroms) 
16 1 ly = 9.5×1012 km (light years) 
17 1 AU = 1.5×108 km (astronomical units) 
18 1 NM = 1.1516 mi (nautical miles) 

 
Table 2.  Equations for converting selected lengths.  Conversion number 
coordinates with Table 1.  

 
Generating Unit Conversions 
 You do not need to memorize a long list of conversion factors that might arise in solving 
geological-mathematical problems, because many can be calculated from a few.  There are 18 
unit conversions in Tables 1 and 2.  Several of them are unnecessary, because they can be 
derived easily from the others. Several more are unnecessary if one knows the prefixes (e.g., 
kilo- for 1000; centi- for one-hundredth; milli- for one-thousandth). 
 One knows twice as many conversions by knowing how to invert equations.  For 
example, conversion 5 (Tables 1 and 2) says that there are 3.281 feet in a meter.  From this, 



conversion 6, that there are 0.3048 meters in a foot, follows immediately.  The algebra is: 
 
 1 m = 3.281 ft;          (10) 
 
dividing both sides by 3.281 produces 
 
 0.3048 m = 1 ft.   .      (11a) 
 
Similarly, conversions 9 and 12 are unnecessary, because they are simply inverted forms of 8 
and 11, respectively.   
 Conversions can be combined to generate new ones.  This is done by nesting equations 
(successive substitution).  For example, how many centimeters are there in a foot?  According to 
Equation 11a, 
 
 1 ft = (0.3048)(1 m).         (11b) 
 
Substituting the 1 m of Equation 9 into the 1 m of Equation 11b produces 
 
 1 ft = 30.48 cm,         (12) 
 
which is conversion 7 of Tables 1 and 2.  Therefore, that conversion does not need to be listed in 
the tables because it is implied by two conversions that are already included (1 and 5). 
 Even Equation 5 does not need to be in the list.  This conversion follows from 
conversions 1, 11 and 13: 
 
 1 m = 100 cm,          (13a) 
 1 in = 2.54 cm,         (13b) 
 1 ft = 12 in.     .     (13c) 
 
Thus, inverting the second and third equations,  
 
 1 cm = 1/2.54 in.,         (13d) 
 1 in = 1/12 ft.        .  (13e) 
 
Then, by substituting these one by one into Equation 13a, 
 
 1 m = (100)(1/2.54)(1/12 ft) 
     = 3.28084 ft.         (13f) 
 
[In case you are wondering about the number of significant digits, there are exactly 100 
centimeters in a meter, exactly 12 inches in a foot, exactly 3 feet in a yard, all by definition, and 
exactly 3937/3600 yards in a meter by Act of U.S. Congress, 1866.  From these, a meter contains 
39.37 in. (exactly), a meter contains 3.2808333 ft (rounded), and an inch contains 2.540005 cm 
(rounded).] 
 As further illustration (and practice with scientific notation), consider these conversions 
that are not included in the list: 



 
 How many Angstroms are in a micron? 
 
 How many light years are there in an astronomical unit?  (A light year is the distance that 

light travels in a year. An astronomical unit is the average distance of the Earth from 
the sun.) 

  
 For the first problem, combine equations of conversions 2, 3, and 15 of the tables.  For 
the second problem, combine conversions 16 and 17.  The answers are: 
 
  1 Å = 10-4 µm ,        (14) 
 
and 
 
  1 ly = 6.3x104 AU.            (15) 
 
(Inverting Equation 15 produces 1 AU = 1.58 × 10-5 ly, which means that light travels from the 
sun to Earth in 1.58 × 10-5 years, or 8.3 minutes.) 
 From length conversions, one can easily derive area and volume conversions.  Armed 
with just a few conversions, an understanding of the prefixes, and some algebra, you are ready 
for many problems.  For example, the seven conversions in Table 3 would serve for all  
 

1. 1 in = 2.54 cm 
2. 1 ft = 12 in 
3. 1 mi = 5280 ft 
4. 1 ha =(100 m)2 
5. 1 mi2 = 640 ac 
6. 1 mL = 1 cm3 
7. 1 ft3 = 7.481 

 
Table 3.  Seven independent conversion equations 
for lengths, areas, and volumes 

 
 
hydrogeology problems that I can think of that do not bring in units of time, mass, force, or their 
combinations.  (Notice, there are only three lengths; although veterans of hydro courses know 
the number of feet in a meter and the number of kilometers in a mile, those are not independent 
of the conversions that are listed.)  For example, consider these: 
  
 How many gallons (gal) are there in an acre-foot (ac-ft)? (An acre-foot is sometimes used 

for large quantities of water.  It comes up in the following way.  Suppose a lake 
covers 100 acres, and the water rises two feet.  The volume has changed 200 acre-
feet, because one acre-foot is the volume of a slab one acre in area and one foot 
thick). 

 
 How many liters are in a gallon (gal)? 



 
 A square mile contains how many hectares (ha)?  (A hectare is a metric unit.) 
 
 For the first problem, use variations of Equation 5 of Table 3 and Equation 3 of Table 3: 
 
  1 acre = 1/640 mi2,        (16a) 
  1 mi2 = (5280 ft)2 

 .      .  (16b) 
 
Combine these two equations with  
 
  1 ac-ft = (1 ac)(1 ft) ,        (16c) 
 
to get 
 
  1 ac-ft = (1/640 mi2)(1ft)   
      = (1/640)(5280 ft)2(1 ft) 
      =  43,560 ft3.       (16d) 
 
Then combine this result with Equation 7 of Table 3, 
  
  1 ac-ft = (43,560)(7.481 gal) 
      = 325,900 gal,       (16e) 
 
to four significant figures (Equation 7 of Table 3is not exact). 
 For the second problem, combine Equations 1 and 2 of Table 3 for 
 
  1 ft = 30.48 cm, 
 
which you already know.  Then cube both sides, replace the cm3 with milliliters (mL, Equation 6 
of Table 3), combine the result with 1000 mL = 1 L, and then substitute for the ft3 using 
Equation 7 of Table 3. The result is 
 
  1 L = 0.2642 gal,        (17) 
 
to four digits.  (You may have noticed that there are about 4 liters to the gallon at gas stations 
that are going metric; the conversion is 1 gal =  3.785 L.) 
 Finally for the hectare, you can use  
 
  1 m = 3.281 ft ,  
 
which can be obtained from Equations 1 and 2 of Table 3, and 1 m = 100 cm, as we have 
discussed.  From this and Equation 4 of Table 3, find the number of square feet in a hectare.  
From Equation 3 of Table 3, find the number of square feet in a square mile.  This gives two 
equations involving square feet; combine them to find that 
 
  1 mi2 = 259.0 ha ,        (18) 



 
to four digits. 
 
 
The Failsafe Way  
 In principle, there is nothing wrong with the method of successive substitution for 
converting units.  In practice, however, it is easy to make a mistake.  Also, it is tempting to skip 
steps and do some of the substitutions in your head.  That invites problems.   
 Most people prefer the method of "multiplying by one" because it is easier to keep track 
of what you are doing. Further, it catches some mistakes. 
 The method starts with the same equations.  For example, consider the acre-foot problem 
again (an acre-foot contains how many gallons?).  The equations are 
 
  1 mi2 =  640 ac,        (19a) 
  1 mi = 5280 ft,         (19b) 
  1 ft3 = 7.481 gal.        (19c) 
 
Now, instead of working with the equations in this form, rearrange each of them to equal one.  
Thus, 
 
  1 = (1 mi2)/(640 ac) = (640 ac)/(1 mi2),     (19d) 
  1 = (1 mi)/(5280 ft) = (5280 ft)/(1 mi),     (19e) 
  1 = (1 ft3)/(7.481 ft) = (7.481 ft)/(1 ft3).     (19f) 
 
Notice there are two different ways of making "1" for each of the equations.  
 Then, the idea is to select the forms of "1" that cancel out units in such a way that the 
units you want to end up with are on the left side of the equation and the units you are starting 
with are on the right.  In this example, you want to end up with acre-foot, which, again, is an 
acre times a foot: 
  
  1 ac-ft = (1 ac)(1 ft). 
  
Cancel out the acres by multiplying it by the first ratio of Equation 19d: 
 
  1 ac-ft = (1 ac)(1 ft)[(1 mi2)/(640 ac)]. 
       
which will leave units of mi2-ft.  To get rid of the mi2, multiply it by the square of the second 
ratio of Equation 19e; this will produce ft3.  Then multiply the ft3 by the second ratio of Equation 
19f, and you are left with gallons.  Usually this is all done in one line: 
 
  1 ac-ft = (1 ac)(1 ft)(1mi2/640ac)(5280 ft/1 mi)2(7.481 gal/1 ft3) 
       = 325,900 gal. 
 
Notice how the units cancel out to produce gallons on the right. This canceling of units is the 
failsafe part.  If the units do not cancel out right, you have made a mistake, probably by selecting 
the wrong ratio (e.g., multiplying rather than dividing by the conversion factor). 



 For completeness, here are the lines that do the other example conversions. 
 
  1 L = (1 L)(1000 cm3/1 L)(1 in/2.54 cm)3(1 ft/12 in)3(7.481 gal/1 ft3) 
       =  0.2642 gal. 
 
  1 mi2 = (1 mi2)(5280 ft/mi)2(1 m/3.281 ft)2(1 ha/(100m)2) 
   =  259.0 ha. 
 
One does have to be careful to put the exponent on the correct side of parentheses.  Dividing by 
(2.54 cm)3, which is correct in the liters-to-gallons problem, is not at all the same thing as 
dividing by 2.54 cm3. 
 The second example of rhetorical algebra, where plate speed was converted from cm/yr 
to km/m.y., is another example of the method of multiplying by one. 
 
Using Unit Conversions 
 Geologists don’t sit around converting units for fun.  They convert units when there is a 
need for it.  The need arises when they do geological-mathematical calculations, because the 
measured quantities are not always in the units needed to produce the desired result. Unit-
conversion problems are embedded within more substantive problems.  
 The examples of CG-6 illustrate a common way that unit conversions arise.  The spatial 
and temporal scales of geological problems are such that a person needs to go from meters to 
microns or kilometers, from grams to kilograms, and from years to millions of years with ease.  
The metric system, of course, is beautifully suited to such changes by powers of ten.  Also, like it 
or not, it is common to have a problem where the given data are in a variety of English units 
(e.g., rainfall in inches/year, stream widths and depths in feet, stream lengths in miles, and 
drainage area in acres).  And, problems with mixed units can arise because some new measuring 
devices are metric, whereas old data and maps with English units are still in use. 
 Another way that the need to convert units arises is worthy of special note, because its 
dangers tend to be underappreciated.  Many equations, especially in geomorphology and 
watershed hydrology, are of the form  
 
   y = axb  ,        (20) 
 
where b is a weird, non-integer exponent, such as 0.237 or 3.58. Such equations result from 
fitting a straight line to a graph of log y vs. log x (as opposed to being derived from first 
principles).  The snag is that these empirical equations are specific to the units for which the 
equation was found. (The appropriate language for these equations is that they are not 
dimensionally homogeneous, which is another story; suffice it to say that the units on one side of 
the equation are not consistent with those on the other, if the a is thought of as a unitless 
coefficient). 
 As an example, consider one of the pioneer equations in quantitative geomorphology: 
 
  L = 1.4A0.6 ,         (21) 
 
from Hack (1957).  Cited in nearly every geomorphology textbook, this equation relates the 
lengths of streams (L) to their drainage areas (A) in the Potomac River basin.  A comparable 



equation has been found to apply at many other places around the world.  One can use this 
equation to get an idea of the size of a drainage basin after measuring the length of the trunk 
stream.  But, the L must be in miles, and the A must be in square miles (and many books don't 
say this).   
  To illustrate, consider this problem: What is the predicted stream length if the drainage 
area is 43 km2?  if you substitute the 43 km2 into Equation 21 and calculate L, you get 13.4 km, 
which is the wrong answer.  To get the right answer, you need to convert the 43 km2 to 16.61 
mi2.  Substituting that value for A produces L = 7.56 mi, which converts to 12.16 km (including 
excess digits). 
 Equation 21 is simple enough that the equation itself can be easily converted to use 
kilometers directly.  To do this you must see that the "1.4" of Equation 21 is in units of mi−0.2.  
So then, you need to convert 1.4 mi−0.2 to units of km−0.2, which you can do like any other unit 
conversion.  Specifically, multiplying by one: 
 
 (1.4 mi−0.2)(1.609 km/mi)−0.2 = 1.27 km−0.2

 
The kilometer version of Hack's Equation, therefore, would be 
 
 L = 1.27 A0.6 , 
 
where L is in km and A is in km2. 
 Empirical equations, which can be extremely useful, can get fairly complicated.  For 
example, here is one from a recent textbook on watershed hydrology (McCuen, 1998, Eq. 7-6) 
(actually I am reducing the number of digits in the coefficient and exponents): 
 
 q = 5.44A 0.680 S 0.500 L0 .168P 0.709R 0.150 D 0.165 C 1.26

 
In this equation, the 10-year peak discharge (q, in ft3/sec) at 58 gaged sites in Indiana is 
expressed in terms of drainage area (A, mi2), channel slope (S, ft/mi), channel length (L, mi), a 
precipitation index (P, in.), basin relief (R, ft), drainage density (D, mi/mi2), and a soil-runoff 
coefficient (C, no units). The usefulness of this equation is that it allows prediction of the 10-
year peak discharge (important for flood design) at similar ungaged streams in the area.  But it 
has to be used correctly.  How would you like to go to the trouble of calculating a value for q 
after substituting in metric values, and then find out that your result is nonsense because you 
didn't use the right units?   
 
Concluding Remarks 
 The notoriety of American students for being weak in algebra is an outcome of the 
release of the findings of TIMSS in early 1998.  TIMSS is the Third International Mathematics 
and Science Study, which tested samples of fourth-, eighth- and twelfth- grade students from 
many countries around the world.  The press release of February 24th, 1998, was followed the 
next day by newspaper articles with headlines such as this one in the NY Times (On the Web): 
"U.S. High School Seniors Among Worst in Math and Science". The article quoted President 
Clinton: "There is something wrong with the system and it is our generation's responsibility to 
fix it.  You cannot blame the schoolchildren.  There is no excuse for this." (There is a large 
volume of information about TIMSS now.  Places to start are: http:/www.enc.org; 



http://ustimss.msu.edu; http://nces.ed.gov/timss; http://www.col-ed.org; 
http://wwwcsteep.bc.edu/timss.) 
 TIMSS was the most comprehensive and rigorous international comparison of schooling 
ever undertaken.  The U.S. was one of 21 countries in the comparison of twelfth-graders.  
Students from traditionally high-performing Asian countries were not included. In general 
knowledge of mathematics, American twelfth-graders did better than those of only Cyprus and 
South Africa.  General knowledge was defined as the knowledge of mathematics needed to 
function effectively in society as adults.  The general mathematics included fractions and 
percentages, graphs, and some algebra. 
 (Poor results on earlier studies had been dismissed on the notion that American scores 
were diluted by the wider range of students taking the exams.  In TIMSS, this effect was 
controlled by giving a separate exam to students who had taken or were taking pre-calculus, 
calculus or advanced placement calculus.  The U.S. came in twelfth of the twelve countries 
participating in this "advanced mathematics" assessment.  Only when the students who took 
advanced placement calculus were isolated as a statistical group, did American students reach 
the international average.) 
 From the many discussions of TIMSS on the Internet, it is clear that people have drawn a 
variety of conclusions from the results.  My own is influenced by one of the themes in Katz's 
review of algebra education.  He made the point that, throughout history, algebra has been about 
solving problems, yet when algebra problems in textbooks have involved applications, they have 
seemed artificial and contrived.  It makes one wonder, what is there to convince students that 
school algebra is useful?  
 Admitting that I am biased, I conclude that students would benefit from solving 
interesting geological-mathematical problems.  Do them in geology-majors courses, in 
introductory geology courses, in science-education courses, in secondary schools.  Embedded 
within these problems are many manipulations -- such as unit conversions -- that provide context 
and practice for the school algebra of manipulating symbols and equations to find unknowns. 
 
Sources 
 Of particular help to me were the chapters "The Mathematics of Islam" and "Algebra in 
the Renaissance" in Katz (1998) and a variety of indexed items in Boyer and Merzbach (1991).  
As usual, I drew from overviews and capsules in NCTM (1989): "al-Khowarizmi" (D. Schrader, 
p. 76-77); "The history of algebra" (J.K. Baumgart, p. 233-260); "Equations and the ways they 
were written" (K. Cummins, p. 260-263). 
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