
Topics this issue-
Mathematics: arithmetic involving density, volume, mass and

weight; equation manipulation; unit conversions;
harmonic mean.

Geology: Stokes' Law of settling; cover-collapse sinkholes;
stress and strength . 

INTRODUCTION

Speaking of Archimedes (CG-28, Jan. 2005, Archimedean
Slices and the Isostatic Sphere), it is worth thinking about
Archimedes Principle in the context of problem solving
using spreadsheets. Nearly all geology majors take a year
of college physics, where they encounter hydrostatics
and, therefore, Archimedes Principle. In many cases,
they also encounter Archimedes Principle in their
hydrogeology courses, and in some cases even in rocks
and minerals courses in the context of measuring
density. This exposure to Archimedes Principle is a good
thing, of course, but there is a problem. Presentation of
the principle is almost always accompanied by the story
about how Archimedes overflowed his bath and –
Eurekea! – how he devised a method to determine
whether a particular crown was a fraud. The problem is
that Archimedes could not have done it that way. The
numbers do not work out. The story does not give
Archimedes enough credit. 

The substance and calculations for the following
story about the crown are detailed in a remarkable
website on Archimedes by Chris Rorres, Professor
Emeritus of Mathematics at Drexel University:
http://www.mcs.drexel.edu/~crorres/. In addition to
the page on "The Golden Crown", which motivates this
essay, there are pages about "Archimedes Claw,"
"Archimedes Screw," "The Lever," "Archimedean
Solids," "Archimedes Crater," and many more. My
contribution to this essay is a couple of spreadsheets and
some comments about geological applications. 

THE STORY

As the story goes, Hiero II (306?-215 B.C.), king of
Syracuse, commissioned the manufacture of a gold
crown. He suspected that the crown he was presented
was a fraud; that is, he suspected it contained some silver
instead of gold. He asked Archimedes to determine
whether his suspicion was correct. Archimedes, of
course, was not to harm the crown in any way. He
needed to perform a nondestructive test. 

While bathing, Archimedes realized that when he
got into the bath, he displaced water and the water
overtopped the bath. This event gave Archimedes the
idea that he could test the gold crown as follows: (a) place
a piece of gold the same weight as the crown in a vessel of
water and fill the vessel to the brim, (b) remove the gold
and place the crown in the same vessel of water, and (c)
notice whether the water overflowed the vessel. If the

crown was a fraud, it would be less dense and, therefore,
displace more water, which would overflow the vessel.

The story is attributed to Vitruvius, a Roman
architect of the first century AD. 

CALCULATION 1: DISPLACEMENTS

As Dr. Rorres explains, the golden crowns of the time
were wreaths (see his Website for illustrations). The
largest one yet found has a maximum ring diameter of
18.5 cm and a mass of 714 g. Some of the leaves are
missing. For the sake of argument, let's say (with Dr.
Rorres) that Hiero's crown had a mass of 1000 g and
would fit in a vessel 20 cm in diameter. 

The spreadsheet of Figure 1 shows the calculation of
how much the water level would rise if the 1000-g golden
crown were placed in a 20-cm-diameter bowl, and how
much it would rise if the crown contained some silver.

Cell C4 gives the mass of the crown. Cell C8
calculates the volume of the crown assuming it is gold
(density = 19.3 g/cm3, Cell C7). The result, 51.81 cm3, is
the volume of water that would be displaced by
immersing the gold crown. How much would the water
rise? The answer is 0.165 cm (Cell C22), and is found from
the volume of displaced water (Cell C8) and the area of
the vessel (Cell C19), which follows from the diameter
(Cell C18). 

Now, how much would the water rise, if the crown
contained some silver? Let's say (with Dr. Rorres) that
30% by weight of the crown is silver (Cell C11). The
calculation is done in the same way except that, now, one
needs to find the density of the gold-silver alloy. If 30
wt% of the crown is silver with density 10.6 g/cm3 (Cell
C12), and 70 wt% of the crown is gold with density 19.3
g/cm3 (Cells C13 and C14, respectively), what is the
average density? We want the harmonic mean (CG - 21,
Sept. 2002, The Harmonic Mean), which is calculated in
Cell C15. The result, 64.57 cm3, is the volume of water
that would be displaced by immersing the imposter
crown. Using the same area (Cell C19), this would cause
a rise of 0.206 cm (Cell C23).

Compare the two answers: a rise of 1.65 mm for the
crown if it's truly gold and 2.06 mm for the crown if it's a
fraud – a difference of less than half a millimeter!

Here is what Dr. Rorres says about the result:"This is
much too small a difference to accurately observe
directly or measure the overflow from considering the
possible sources of error due to surface tension, water
clinging to the gold upon removal, air bubbles being
trapped in the lacy wreath, and so forth."

In the spreadsheet, Cells C4 (mass), C11 (percentage
of silver), C18 (diameter of water vessel), C7 (density of
gold) and C12 (density of silver) are all input numbers.
All the other cells are formulas. It is worth changing the
numbers in the first three to see the effect of the
assumptions on the final result. With 1000 grams, 30%
silver, and 20-cm diameter, the result is a 0.41-mm
difference. What if the mass of the wreath was less, or
there was less silver, or the bowl had a larger diameter?
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ARCHIMEDES PRINCIPLE

The numbers do not work out in Vitruvius's story. Even
worse for teaching Archimedes Principle is that
Archimedes Principle is not involved in the story.
Archimedes Principle is this:

A submerged body is buoyed up by a force equal to the
weight of fluid it displaces. 

Vitruvius's story makes no mention of forces. 

A BETTER STORY

Vitruvius's story does not do justice to Archimedes.
Quoting Rorres: "... in spite of Vitruvius's description of it
as ‘the result of boundless ingenuity,' the method
requires much less imagination than Archimedes
exhibits in his extant writings." 

Dr. Rorres has a better idea – "a more imaginative
and practical technique to detect the fraud." It applies
Archimedes Principle. It employs levers. It would work.

The better idea involves a simple beam balance,
where a pan is suspended from each end of a beam.. On
one pan place the crown. On the other pan, place an
equal mass of gold (a gold nugget). If you can't find a
gold nugget with the same mass as the crown, then
adjust the balance point (applying Archimedes' Law of
the Lever, as Rorres points out). Then place the whole
thing – balance, crown and nugget – in a (large) container
of water. If the crown is really gold, then both it and the
nugget will be buoyed up by equal forces, and they will
still balance each other. If the crown contains silver, it
will displace a larger weight of water, which means that
it will be buoyed up by a larger force than that buoying
up the nugget. As a result, the balance will tip, the nugget
sinking. Isn't that ingenious? Much more so than
overtopping a bath.

CALCULATION 2: FORCES 

The spreadsheet of Figure 2A does the calculation, which
follows the numbers on Dr. Rorres' website. Again we
start with the mass of Hiero's crown as 1000 grams (Cell
C4). This time we are interested in forces, and so we
calculate that the weight of the crown is 9.81 N (Cell C5).
Similarly, the mass and weight of the gold nugget are
1000 grams (Cell C20) and 9.81 N (Cell 21), respectively.

Now, we immerse both the crown and nugget into
the water and calculate the volume of water displaced in
each case and, from those results, the respective
buoyancy forces. Block C8:C17 does the calculation for
the crown assuming, again, that it is 30 wt% silver and 70
wt% gold. Block C20:C26 does the calculation for the
gold nugget.

Taking the gold crown first, Block C8:C14 calculates
the volume of displaced water (64.57 cm3) using the
harmonic mean as we did in the spreadsheet of Figure 1.
Cell C15 converts the volume to cubic meters, from
which C16 calculates the mass of displaced water
(remembering that the density of water is 1000 kg/m3).
From the mass of the displaced water (0.0646 g), Cell C17
calculates the weight (0.63 N), which is the force buoying
up the crown.

For the nugget, Cell C23 calculates the volume as
51.81 cm3 from the mass (C20) and density (Cell 22) as in
the spreadsheet in Figure 1. Converting to cubic meters
(C24) and finding the mass of displaced water (C25)

Figure 1. Spreadsheet calculating and comparing the
rise in water level resulting from immersing a golden
vs. an imposter crown.

Figure 2. Spreadsheet calculating the buoyancy
forces on a golden vs. an imposter crown



leads to the weight of displaced water (0.51 N), which is
the buoyancy force acting on the nugget.

The result of the calculation is shown in Figure 3.
Immersed in water, the downward force on the nugget is
9.81 N and the upward force is 0.51 N for a net
downward force of 9.30 N. Immersed in water, the
downward force on the imposter crown is 9.81 kg, and
the upward force on it is 0.63 N, for a net downward force
of 9.18 N. The nugget sinks because of an imbalance of
0.12 N

The spreadsheet in Figure 2B gets at the question,
How large is 0.12 N? The answer is that a mass of 0.0122
kg (Cell C3) weighs 0.12 N. Converting to grams (Cell
C4), and using a density of limestone as 2.5 g/cm3 (Cell
C5), a volume of limestone of 4.9 cm3 (Cell C6) weighs
0.12 N. If this volume of limestone were a cube it would
measure 1.7 cm on a side (Cell C7). So, Archimedes
balance scale would be able to discern the difference if it
were capable of registering a 1.7-cm cube of limestone.
Quoting Rorres website again: "Scales from Archimedes
time could easily detect such an imbalance in mass.
Additionally, sources of error arising with Vitruvius's
method (surface tension and clinging water) would not
arise with this scale method."

COMMENTS

The tale spun by Vitruvius some two thousand years
ago, I believe, misdirects students in their thinking about
Archimedes Principle. What "principle" comes to mind
when one thinks of Archimedes overtopping his bath? A
submerged body displaces its own volume of water?
While true, that "principle" should not have required one
of history's greatest intellects to figure out. To associate
that truism with Archimedes Principle is akin to saying
Galileo discovered that things fall down or that Newton
discovered that apples fall from trees. 

What about the student who says, "Archimedes
Principle: A submerged body displaces its own weight of
water"? I bet that student is thinking of Vitruvius's story

and also remembering that Archimedes Principle has
something to do with weight (force). But the student is
incorrect. Not only is the statement not Archimedes
Principle, but the statement itself is false, not a principle
at all. 

Perhaps the student is thinking "Archimedes
Principle: A floating body displaces its own weight of
water" (emphasis added to show the difference from the
preceding statement). This statement about a floating
object is true, but it is not Archimedes Principle.
Archimedes Principle is more general. This statement is a
special case where the force of buoyancy balances the
weight of the object. 

These mistakes would not happen if students think
of Dr. Rorres's story rather than Vitruvius's, for then the
students would be thinking of buoyancy forces and the
balance or imbalance of forces. This thinking then would
help in all sorts of geology courses. Let me give two
examples.

Example 1: Stokes' Law

The first example is Stokes' Law, a staple of
sedimentology courses. For a sphere falling through a
column of fluid:
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where v is the settling velocity; ρs and ρf are the densities
of the solid and fluid, respectively; µ is the viscosity of
the fluid; and D is the diameter of the sphere. Where does
the ρs−ρf term come from? It is Archimedes Principle
coming into play in the net force propelling the sphere
downward.

The net downward force is the difference between
the weight of the sphere (downward force due to gravity)
and the sphere's buoyancy (upward force). This
difference is the driving force and is found from 
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The first term on the right is the weight of the sphere
(specific weight, ρsg, times the volume of a sphere
written in terms of diameter instead of radius). The
second term on the right is the weight of the displaced
sphere of fluid, namely Archimedes Principle for the
buoyancy force. Equation 2 reduces to:
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which can be usefully compared to Equation 1. 
The settling (terminal) velocity occurs when the

driving force is balanced by the resisting force, and the
sphere is not accelerating. Thus, for the settling velocity:

F F
Drag Driving

= (4)

where FDrag is the resisting force. Now, substitute
Equation 3 into Equation 4, divide by Equation 1, and
rearrange:
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Figure 3. Summary of gravity and buoyancy forces for
a setup that would solve King Hiero's problem.



F Dv
Drag

= 3π (5)

Equation 5 is the drag force on a sphere. It is known as
Stokes' Law of Resistance, and, historically, it was Stokes'
path to Equation 1. That is, his breakthrough was
figuring out Equation 5. See Blatt et al. (1980, p. 59-66) for
the physics of Stokes' Law. See Hsu, (1989, Chap. 3) for
the relevant physics plus some reflections about teaching 
it to geology students. 

Example 2: Sinkholes

Tampa is in sinkhole country. The kind of karst in
west-central Florida is called "mantled karst" or "covered
karst." The name means that the limestone does not crop
out directly. Rather, the Eocene and Oligocene
limestones of the area are covered by younger sediments,
particularly a layer of Plio-Pleistiocene sand. In many
places, there is a Miocene clayey layer between the
limestone and the sand, and in places the sandy
sediments themselves are intermixed with clay layers at
the base of the sand section. The clay-rich zone acts as a
confining unit between the monumentally important
Floridan aquifer system (carbonate rocks) and the sandy
surficial aquifer system.

Sinkholes in the Tampa area reflect transport of the
sand downward through the clayey beds and into
cavernous zones at the top of the underlying limestone.
Thus the confining unit is perforated by pipe-like
structures filled with sand and organic matter from the
surface layer. The sinkholes are a surface manifestation

of these pipes, where sand is moving down somewhat
like it does in an hourglass. We are living on a plain at the
top of a blanket of hourglass structures. Where the
hourglass flow gets stuck, because of internal resistance
of the clayey sands in the pipe, we have so-called
cover-collapse sinkholes, and the sinkhole subsidence is
episodic. Where the hourglass flow is of cohesionless
sand, we have so-called cover-subsidence sinkholes. The
cover-collapse sinkholes have impact because the time
intervals between episodes are commonly long enough
for urban development. 

Numerous geomorphology and environmental
science courses at USF include segments about our
sinkholes. The USF GeoPark (http://uweb.cas.usf.edu/
~vacher/USFGeoPark/GeoPark.htm) features a
sinkhole. From living here we all know that water levels
play a role in sinkhole episodes. For example, when it
freezes (thankfully rare events lasting at most a few
hours after midnight), farmers in the rural outskirts
pump large amounts of water from the Floridan aquifer
to spray their plants (e.g., orange trees). The resulting ice
coating prevents the plants from still lower
temperatures. Sinkholes follow. 

The story of this sinkhole inducement goes as
follows. The water table is in the surficial sands. The
potentiometric surface is typically a little lower than the
water table. Thus there is a hydraulic drive for
downward flow through the confining bed – meaning
through the sand pipes below the sinkholes. The sudden,
large-scale withdrawals lower the potentiometric
surface, which increases the hydraulic drive, which
increases the flow through the sand pipe, which induces
the sinkhole to clear its throat. "Clearing the throat"
means that the pipe subsides, which means a

Figure 4. Spreadsheet assessing whether a column will hold up a rectangular block. 



cover-collapse sinkhole. To the extent that the water table
is also lowered, there is the added effect that the sand
layer weighs more as it becomes dewatered. This
increase in load acts to push down the plug in the pipe.
This effect is likely to dominate where the confining bed
is thin and the two aquifers are hydraulically connected.
For a full account of our sinkholes see Tihansky (1999).

The point to be made here is that the second effect –
the effect of dewatering – is an application of
Archimedes Principle. While the material is submerged,
it is buoyed up by the water, and therefore its effective
weight is less. To see the magnitude of load increase
during dewatering, consider the spreadsheet of Figure 4.
This figure is a slight modification of a spreadsheet I use
for other purposes in my Computational Geology course.
I also include it in a spreadsheet module (Number 1.3
within a set on the density of the Earth and Earth
materials) at a quantitative literacy website at
http://www.evergreen.edu/washcenter/modules/star
t.htm.

The spreadsheet in Figure 4 gives a calculation to
determine whether a column of rock will hold up a
particular portion of the roof. The problem fits with the
workbook we use for the class (Derringh, 1998), which
unfortunately is out of print. As this problem is set up,
there is one column (Cell E14) supporting a 7 m x 8 m
section of the roof (Cells E7 and E8) that is 12 m thick
(Cell E6). The column is 0.5 m x 0.5 m in cross-section
(Cells E12 and E13). Will the column hold? If the stress
(weight per area) on the column (Cell E24) is less than the
compressive strength of the rock in the column (60 MPa;
Cell E15), the logic statement in Cell E28 will answer
"Yes."

The key line for the point about Archimedes
Principle is Row 9, the effective density. The value
entered in Cell E9 is 1.7 g/cm3. This is ρs−ρf as in Stokes'
Law: the density of a 2.7-g/cm3 rock reduced by the
density of the water (1.0 g/cm3) it displaces. Thus the
spreadsheet answers the question for a submerged case.

Lower the water level so that the roof rock is no
longer buoyed by the water, and the density increases to
2.7 g/cm3 – an increase of 37%. Each lb (force) of
submerged weight becomes 1.37 lb when it is stranded
high and drive. Change Cell E9 to 2.7; then, Cell E24
becomes 71.2, and Cell E28 becomes "No." 

CONCLUDING REMARKS

Archimedes Principle is one of history's great physical
concepts. Vitruvius's story, however, under-values both
the richness of the concept and the insight of the genius
who figured it out. The subject is worthy of care in

geology courses that apply physical principles to
geologic processes. Using Rorres's solution to Hiero's
question – rather than Vitruvius's – should improve
student understanding of Archimedes Principle and
prepare them for using it outside the realm of
introductory physics. 

Thinking of forces and buoyancy should also help
with two classic Archimedes questions:

• Consider ice cubes in a glass of water. If the ice melts,
will the water rise? (Geologically, if the floating
Arctic Ice melts, will sea level rise?)

• Consider a geologist in a boat in a small pond. The
geologist has collected a mighty pile of rocks. The
geologist's assistant doesn't like the thought of
carrying the rocks to the truck and throws them
overboard. Does the level of the pond rise
(theoretically)?

The second question deserves some context. Beth
Fratesi and Don Seale, two graduate students at USF,
posed a version of the problem to me. They are alumni of
Mississsippi State University, where they got the
question as a homework assignment from John Mylroie.
So I called John. Turns out that he got the question on his
PhD oral exam some thirty years ago. 

The story shows how Archimedes Principle
problems are handed down from generation to
generation. This is a good one. I hope it continues. 
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Note to readers of Computational Geology: Column 29, printed in the March, 2005 issue suffered from a post-production
glitch in font translation, the resulting column ran with no Greek letters. Therefore, the column has been rerun in this
issue. Thank you for your patience and understanding.
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