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Introduction 

If you have ever taken a course in geochemistry you have learned that aqueous 
geochemists speak differently about numbers than the rest of us.  If you have a course in aqueous 
geochemistry in your future, you will learn that number-language.  When you do, you will have a 
much better understanding of logarithms.   

The language that aqueous geochemists use for numbers can be illustrated as follows.  
The solubility product of calcite is 0.00000000447.  This number, as you know, can be expressed 
in a more friendly way by using scientific notation: 4.47×10−9.  Aqueous geochemists, however, 
express the number as 10−8.35.  Similarly, instead of saying that the partial pressure of CO2 in the 
atmosphere is 3.16×10−4, they say it is 10−3.5.  Although I can't say that I have heard this, it 
would not surprise me if one of these people would refer to the age of the earth as 109.6 yrs or the 
distance to the moon as 105.6 km. 

Why do aqueous geochemists speak of numbers this way?  The purpose of this column is 
to explore that question and, in the process, to show how this number-language is related to 
others that are more familiar. 
 
Logarithms 

The numbers used as exponents in expressions such as 109.6, 105.6 and 10−3.5 are the 
logarithms of the quantities.  That is, specifically, the logarithm of 4.6 billion is 9.6; the 
logarithm of 380,000 is 5.6; the logarithm of 3.16×10−4 is −3.5.  Don't take my word for it; try it 
on your calculator.  Enter 380,000, for example, and press the LOG key; you will get 
5.579783597.  Now press the 10x key; you will get 380,000 -- the number you started with.  
From this it is obvious that taking logs is the opposite of exponentiation; they are inverse 
functions. 

All this should be no surprise; it is what you learned when you learned the definition of a 
logarithm -- "For a positive number, N, the logarithm of N is the power to which some number b 
[the base] must be raised to give N" (J. Dantith and R.D. Nelson, The Penguin Dictionary of 
Mathematics, Penguin Books, London, 1989, p. 203).  In the form of equations: 
 

log b N = x,  if bx = N.         (1) 
 
It is sometimes useful to combine the two equations of (1) into a single equation: 
 

blog(N) = N .                       (2) 



 
Logarithms were defined as exponents by the great Swiss mathematician Leonhard Euler 

(1707-1783) in a two-volume treatise, Introductio in analysin infinitorum.  Publication of that 
book in 1748 brought the then-new mathematics of infinitesimal calculus of Newton (1642-
1727) and Leibniz (1646-1716) to a status comparable to that of the well-established geometry 
and algebra.  That was 250 years ago, some fifty years before Hutton's Theory of the Earth 
(1795), the event that we say gave birth to geology as a science. 

The realization that logarithms are nothing more than exponents should clear away any 
mystery about where the Rules of Logarithms come from.  For example, when you multiply two 
power-of-ten numbers together, you add their exponents: 

 
 ( )( ) baba +=101010 ; e.g., ( )( ) 523 101010 = . 

 
 When you divide them, you subtract their exponents:  
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And when you raise a power-of-ten number to a power again, you multiply the two exponents 
together: 
 
  ( ) ; e.g., . abba 1010 = ( ) 623 1010 =

 
 So, if you represent the power-of-ten number by its logarithm -- i.e., the exponent in the power-
or-ten expression -- then the multiplication of the original numbers is paralleled by the addition 
of their logarithms; division of the two numbers is paralleled by subtraction of their logarithms; 
and raising one of them to a power is paralleled by multiplication of its logarithm by the power.  
Thus results the three rules: 
 

Rule 1: BAAB logloglog += , 
 
Rule 2: , BABA loglog)/log( −=
 
Rule 3: . AnAn loglog =

 
Logarithmic notation 

There are many ways of expressing a number.  Let's go back to 380,000 – a distance in 
kilometers to the moon.  You can express that number in scientific notation: 3.8×105.  As we 
have discussed, you can express it by using its logarithm as an exponent (as in Equation 2): 105.6. 
 We will call that logarithmic notation.   

But, as you know, there can be other bases for logarithms besides 10. 
One base you have certainly encountered is e, the base of natural logarithms.  The 

transcendental number e has a value of 2.71828 (to six figures), and it was introduced by Euler 
in his Introductio.  You can easily determine the natural logarithm of a number by using the LN 



key of your calculator; thus ln(380,000) is 12.848.  This means that another way of expressing 
380,000 in logarithmic notation is e12.848. 

In addition to the natural base, e, and the "unnatural" base 10, there is an infinitude of 
other "unnatural" bases that could be used to express numbers logarithmically.  These other 
unnatural bases are rarely used, so when they are used, the base is specifically denoted as a 
subscript of the log (e.g., log 2 N means the base is 2).  If the log has no subscript (e.g., log N), 
the understanding is that the base is 10.  The decimal or base-10 log is known as the common 
logarithm.  Table 1 includes some other ways of expressing 380,000 using unnatural bases: 
 

 base 380,000 = 
binary 2 2 18.5356

octal 8 8 6.1785

decimal 10 10 5.5798

duodecimal 12 12 5.1704

hexadecimal 16 16 4.6339

sexagesimal  60 60 3.1380

 
Table 1.  Alternative logarithmic expressions for 
380,000. 
 

All the numbers given as exponents in Table 1 are the logarithms of 380,000 to the various 
bases. 

How can you move from the logarithm of a number in one base to the logarithm of a 
number in another base?  You probably recall that there is a Rule of Logarithms that deals with 
that question: 
 

Rule 4:  
b
N

N
a

a
b log

log
log = , 

 
where b is the "new base", and a is the "old base".  In words, the rule says, "The log in the new 
base of N is equal to the log in the old base of N divided by the log in the old base of the new 
base.  The rule is derived very easily (once you know how to do it).  First, take the log in the new 
base of both sides of Equation 2: 
 
 ( ) Nb a

N
a

b loglog log = . 
 
Next, apply Rule 3 of logs to the left side: 
 
 . ( )( ) NbN aab logloglog =
 
Then, rearrange to solve for log b N, and you get Rule 4.  All the exponents in the above listing 
for the various bases were calculated using this rule.  For example log16(380,000) is log(380,000) 
divided by log(16), or 5.5798/1.2041. 

Now let's look at the same conversion problem in terms of logarithmic notation.  That is, 
how does 105.5798 convert to 164.6339 (Table 1) in the context of logarithmic notation?  This 



question in the form of an equation is: 
 

380,000 = 105.5798 = (16x)5.5798, 
 
or simply, 
 

16x  = 10, 
 
where x is the unknown.  In other words, what number in the form of 16x do you replace 10 
with? You find x easily by taking logs of both sides, and applying Rule 3: 
 
  110log16log ==x , 
 
 so . 83048.016log/1 ==x
 
Then substituting 160.83948 for 10 in the power-of-ten expression, you get: 
 

380,000 = (105.5798) = (160.83948)5.5798 = 164.6339 ,   
 
which gives the answer.  Note that this line shows the entire logic of the conversion.  It is 
equivalent to Rule 4. 
 
Scientific notation 

There is a clear-cut relationship between a number such as 380,000 in logarithmic 
notation, 105.5798, and the same number in scientific notation, 3.80×105.  The scientific notation 
isolates the whole number in the exponent that appears in the logarithmic notation.  The isolation 
is by means of Rule 1 (exponents add).  Thus: 
 

380,000 = 105.5798 = 100.5798 × 105 = 3.80 × 105, 
 
because log(3.80) is 0.5798 (or 100.5798 = 3.80).  As you can see, the number that controls the 
coefficient in the scientific notation (i.e., 3.80 here) comes from the fractional part of the 
exponent of the logarithmic notation.  The whole number is the order of magnitude: the part that 
controls the location of the decimal point of the number when it is written normally (380,000).  
Similarly, when the coefficient in the number in scientific notation has a single number to the 
left of the decimal point (3.8), then the exponent of the power-of-ten part gives the order of 
magnitude of the number (5). 
  For numbers less than one, such as the solubility product of calcite, 10−8.35, the exponent 
in the logarithmic notation is invariably negative, because log b (1) is zero, no matter what the 
base is (i.e., b0 = 1).  For such fractional numbers, there is an intermediate step in converting 
between logarithmic notation and the usual form of scientific notation.  Thus: 
 

10−8.35 = 10−0.35 × 10−8  = 101 − 0.35 − 1 × 10−8  
                      = 100.65 − 1 × 10−8  

                                    = 4.47 × 10−9   



 
The intermediate step is where the negative fractional exponent is converted to a positive 
exponent.  The purpose of this step is only to make the coefficient of the scientific notation come 
out in the usual way where there is a nonzero digit to the left of the decimal point.  If you were to 
go directly from 10−0.35 × 10−8 into scientific notation, you would get 0.447 × 10−8, because 
10−0.35 is 0.447.  This is simply another manifestation of the fact that the number to the left of the 
decimal point in the exponent of the logarithmic notation controls only the location of the 
decimal point in the normal notation (i.e., the order of magnitude).  

We use a scientific notation in which the base of the order-of-magnitude part is 10.  
Clearly, other bases could be used, and they would be worked out in a similar way (Table 2).   
 

 logarithmic 
notation  

intermediate 
step  

scientific 
notation 

binary 2 18.5356 = 20.5356 × 218   = 1.45 × 218

octal 8 6.1785 = 80.1785 × 86   = 1.45 × 86

decimal 10 5.5798 =10 0.5798 ×105 = 3.80×105

duodecimal 12 5.1704 = 12 0.1704 × 125 = 1.53 × 125

hexadecimal 16 4.6339 = 16 0.6339 × 164 = 5.80 × 164

sexagesimal  60 3.1380 = 60 0.1380 × 603 = 1.76 × 603

 
Table 2.  Converting 380,000 from logarithmic notation to scientific 
notation in each of the bases of Table 1.   

 
To see how the equivalencies of Table 2 work, consider the first one, which involves a binary 
base for the order of magnitude.  The value of 218 is 262,144.  The result of multiplying 1.45 and 
262,144 is 380,000 (to 3 figures). 

It is clear from this Table 2 that scientific notation is a partial logarithmic notation.  The 
part of the scientific notation that expresses the order of magnitude is written in logarithmic 
notation.  The coefficient is written in the normal way, non-logarithmically. 
 
Positional notation 

When logarithms were developed by John Napier (1550-1617), they were eagerly 
adopted by the computational scientists of the day.  Notable among them was Tycho Brahe 
(1546-1601), whose painstaking study of the celestial bodies provided the data for the landmark 
inferences of his successor at the Danish Observatory, Johannes Kepler (1571-1630), another 
great user of logarithms.  The reason that logarithms were so enthusiastically welcomed was that 
Rules 1-3 greatly facilitated the detailed calculations that were necessary for astronomy and 
navigation.  This invention of logarithms was one of the most important breakthroughs for 
computation up to that time. 

Probably the all-time greatest breakthrough for computation – apart from counting and 
the use of numbers in the first place – was positional notation.  To understand (and appreciate) 
positional notation, consider multiplying 93 by 18, without a calculator.  No problem: you can do 
it easily on a scrap of paper.  Now do it using Roman numerals: multiply XCIII by XVIII.  There 
you can see the difference between positional and non-positional notation.  In positional 
notation, there is a string of figures each one of which fills a place, and each place represents an 
order of magnitude.  In this place-value notation, and with a base of 10,  



 
( ) ( )01 10310993 ×+×=  and ( ) ( )01 10810118 ×+×=  

 
Recalling that  
 
  ( )( ) bdbcadacdcba +++=++ , 
 
the result of the multiplication is: 
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( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) 1674104107106101

1041021031021016
10241031072109

0123

01112

0112

=×+×+×+×=

×+×+×+×+×=

×+×+×+×

) 

 
In Roman numerals, the result is MDCLXXIV.  How can you possibly get that result except by 
shifting to some more user-friendly notational scheme? 

We use a fully developed, decimal, positional scheme.  In this scheme, each of the places 
is 10× larger than the one to the right, and these places include those for orders of magnitude less 
than one (i.e., decimal fractions).  In this scheme, we have exactly 10 symbols (0 to 9) with 
which to fill the places, and these numerals include a symbol for zero, which means "nothing" 
and can serve as a placeholder where necessary.  This scheme, which is so familiar to us, was a 
monumental achievement and evolved over a long period of time. 

Our decimal, positional scheme is commonly referred to as the Hindu-Arabic system.  
Although the early evolution of this system is poorly recorded, most historians recognize that a 
decimal, place-value system incorporating a zero became established in India around the 4th to 
7th century AD.  By the 9th century, the system was in Baghdad, where it was taken up by the 
Arabs and spread across north Africa to Spain.  Particularly important were the writings around 
825 of the Moslem scholar, Mohammed ibn-Musa al-Khowarizmi, by many accounts, the most 
influential mathematician of medieval times.  Translated into Latin in the 12th century – 
probably by an English monk – his book introducing the Hindu-Arabic system starts with 
Algortmi dixit ("Al-Khorwarizmi says"), from which the word algorithm, meaning computational 
process, has come.  But the decimal fractions that are now part of the system were not 
incorporated until 1585 with the work of a Dutch physicist, Simon Stevin (1548-1620), a 
contemporary of Napier.  Indeed the popularity of logarithms played a major role in the adoption 
of decimal fractions. 

The idea of positional notation goes back to at least the ancient Babylonians of 2000 B.C. 
 They used a base of 60.  A vestige of this sexagesimal system is our 60 seconds to the minute 
and 60 minutes to the hour.  In a sexagesimal system, the "units" place ranges from 1 to 59; two-
place numbers range in magnitude from 60 to 3599 (one less than 602); and three-place numbers 
range from our 3600 to 215,999 (one less than 603).  Using our decimal notation for the numbers 
occupying sexagesimal places, the distance to the moon would be represented by 
 

distance to moon = 1,45,33,20;0 
 
where the commas separate places and the semicolon is a "sexagesimal point" separating whole 



numbers on the left from fractional parts to the right.  To convince yourself that this succession 
of four "sexagesimal digits" represents 380,000, multiply out the following expression, which 
shows in expanded view what the positional system is all about: 
 
  ( ) ( ) ( ) ( )0123 602060336045601;20,33,45,1 ×+×+×+×= . 

 
Continuing the idea of positional notation using other bases, consider what we might be 

using if we had evolved to have eight, instead of five, digits on each hand (imagine the musical 
instruments!).  We very well might be using a hexadecimal place-value system instead of our 
familiar decimal system.  In that case, our 380,000 would be expressed as something like (i.e., 
using decimal numerals for the digits): 
 

distance to the moon = 5,12,12,6,0;0 
 
meaning ( ) ( ) ( ) ( ) )160(16616121612165 01234 ×+×+×+×+× . 
 

From these examples, we can see the connection between place-value systems and the 
logarithmic and scientific-notation systems.  With our decimal base, the number 580,000 is a six-
figure number, one more than its order of magnitude expressed in scientific notation as 5.8 × 105, 
or fractionally (logarithmically) as 105.5798.  With a sexagesimal base, the same number is a four-
figure number (to the left of the sexagesimal point), one more than its order of sexagesimal 
magnitude, 1.7 × 603, or fractionally (sexagesimal-logarithmically), 603.1380. 
 
Geochemical computations 

Aqueous geochemists use decimal-logarithmic (i.e., power-of-ten) notation to express 
equilibrium constants.  The key to equilibrium constants is the Law of Mass Action (LMA).  Use 
of the LMA involves multiplication and division of variables that range over many orders of 
magnitude.  Such calculations are made easy if the numbers are expressed logarithmically. 

The LMA states a relation amongst the concentrations of the participants in a chemical 
reaction when that reaction is at equilibrium.  The LMA says that the equilibrium condition for a 
reaction, 
 

reactants ⇄ products, 
 
is that the multiplicative product of the activities of the reaction products divided by the 
multiplicative product of the reactants is equal to a particular number that depends only on 
temperature (T) and pressure (P).  The particular number is the equilibrium constant (Kequil).  The 
concept of activity takes some discussion in geochemistry courses.  For our purposes, we will 
simply say that activity is a variant of concentration that is used for thermodynamic calculations. 
  As an example of the LMA, consider the reaction stating the dissolution and precipitation 
of calcite: 
 

CaCO3 ⇄ Ca2+ + CO3
2−. 

 
The LMA says that, at equilibrium, the product of the activities of Ca2+ and CO3

2− divided by the 



activity of CaCO3 is equal to a number that depends only on T and P.  Because the activity of a 
pure solid is 1, the equilibrium constant in this case is simply the product of the two activities on 
the right, and so it is called a solubility product.  At 25°C and 1 atm pressure, the solubility 
product of calcite, Kcalcite, is 10-8.48, as noted at the beginning of this column.  Thus, in one line, 
the critical information is written  
 

CaCO3 ⇄ Ca2+ + CO3
2−       Kcalcite = 10−8.48 .         (3) 

 
Note that if the reaction were written in reverse order -- so that the ions were on the left 

and the solid was on the right -- then the ratio given by the LMA would need to be inverted, and 
the equilibrium constant would be the reciprocal of 10−8.48.  The reciprocal of 10−8.48 is 108.48, 
because, in terms of logs and Rule 2,   
 

log(1/10−8.48) = log(1) − log(10−8.48) = 0 − (−8.48) = 8.48 
 

To illustrate the efficacy of logarithmic notation in geochemical calculations, consider 
the following reaction: 
 

CaCO3 + CO2 + H2O ⇄ Ca2+ + 2HCO3
−     (4) 

 
This reaction, more than Equation 3, is the one to consider in natural waters, because HCO3

− 
dominates over CO3

2− at normal pH's, and CO2 is commonly involved in the dissolution and 
precipitation of calcite.  This is the equation, for example, that is used to point out that increasing 
the PCO2 of a solution at equilibrium with calcite will cause more calcite to dissolve, and that 
decreasing the PCO2 of a solution at equilibrium will drive the precipitation of calcite.  The 
question, then, is: What is the equilibrium constant for the reaction of Equation 4? 

The reaction of Equation 4 can be seen to be the sum of four reactions, each with their 
own equilibrium constants.  The first is the dissolution of calcite (equation 3), for which the 
LMA gives 
 

Kcalcite = [Ca2+][CO32−] = 10−8.48 , 
 

where the brackets refer to activities.  The second is the dissolution of CO2 into the water 
 

CO2 + H20 ⇄ H2CO3,   KCO2 = [H2CO3]/PCO2=10−1.47

 
because the activity of a gas is its partial pressure, and the activity of water is 1.  The third is the 
dissociation of carbonic acid: 
 

H2CO3 ⇄ H+ + HCO3
−,   KH2CO3  = [H+][HCO3

−]/[H2CO3] = 10−6.35. 
 

And the fourth is the dissociation of the bicarbonate ion: 
 

HCO3
− ⇄ H+ + CO3

2−,   KHCO3
  = [H+][CO3

2−]/[HCO3
−] = 10−10.33. 

 



To see how these reactions result in Equation 4, it is helpful to arrange them in a list in 
such a way that the sum of the rows results in the desired reaction.  Thus: 
 

         CaCO3 ⇄ Ca2+ + CO3
2−,  Kcalcite = 10−8.48

        CO2 + H2O ⇄ H2CO3 ,  KCO2 = 10−1.47

         H2CO3 ⇄ H+ + HCO3
−,  KH2CO3 = 10−6.35

          CO3
2− + H+ ⇄ HCO3

−,  1/KHCO3 = 10+10.33

 
Note that the last reaction has been reversed (and its equilibrium constant inverted).  The 
reaction is reversed so that the H+'s and the CO3

2−'s drop out when you add up the four reactions. 
 The H2CO3's also drop out in the addition, and so you get the desired reaction, Equation 4. 

To get the Kequil of the reaction of Equation 4, simply multiply all the K's of the second 
column together.  The reason that you multiply the K's together can be seen if you write out all 
the LMA's and multiply them together.  The result is: 
 

  
[ ][ ]

2

2
3

2

3

322

COHCO

COHCOcalcite

P
HCOCa

K
KKK −+

= . 

 
Because the equilibrium constant of the sum of the reactions is obtained by multiplication of the 
equilibrium constants of the constituent reactions (each written in the appropriate order with 
respect to numerator and denominator of the LMA's), then all you have to do to get the result is 
to ADD the exponents of the equilibrium constants expressed logarithmically.  Thus 
 

  33.1035.647.148.8

3

322 10 +−−−=
HCO

COHCOcalcite

K
KKK

, 

 
or 10−5.97.  The ease of this last step – addition instead of multiplication – illustrates the 
advantage of using logarithmic notation for equilibrium constants. 

As another example, consider the following problem.  If calcite comes into equilibrium 
with water that is open to atmospheric PCO2 (i.e., 10−3.5 atm), and, assuming there are no ionic 
species in the water other than Ca2+, H+, HCO3

−, CO3
2− and OH−, it can be shown that the 

solution will have a pH of 8.4.  Under these conditions, what is the activity of Ca2+?  (This would 
be the solubility of calcite under these conditions.) 

As a first step, arrange the four reactions so that you get a reaction with CaCO3, Ca++ and 
H+: 

         CaCO3 ⇄ Ca++ + CO3
2−  Kcalcite = 10−8.48

         CO3
2− + H+ ⇄ HCO3

−          1/KHCO3 = 10+10.33

      HCO3
− + H+ ⇄ H2CO3         1/KH2CO3 = H+6.35

        H2CO3 ⇄ CO2 + H2O  1/KCO2 = 10−1.47

 
Adding up the column on the left, you get: 
 

CaCO3 + 2H+ ⇄ Ca++ +CO2 + H2O      (5) 
 



Multiplying the equilibrium constants of the second column together, you get: 
 

  47.135.633.1048.8

2323

10 +++−=
COCOHHCO

calcite

KKK
K

 

 
or 10+9.67, which is the Kequil for the reaction in Equation (5).  Next, write the LMA for the same 
reaction (Equation 5): 
 

  
[ ]
[ ]

67.9
2

2
2

10=
−

+

H

PCa CO . 

 
 (The activities for calcite and water do not appear, because they are both equal to 1.)  Then 
rearrange to solve for [Ca2+] 
 

  [ ] [ ]
2

267.9
2 10

COP
HCa

+
+ =  

 
Now you can plug in the given values.  Recall that pH is −log[H+] so the given pH of 8.4 means 
that [H+] is 10−8.4.  So: 
 

  [ ] ( ) 5.36.1667.9
5.3

24.867.9
2 10

10
1010 +−
−

−
+ ==Ca , 

 
or 10−3.6, which is the answer in logarithmic notation,.  In scientific notation, [Ca2+] is 2.5×10−4 
moles/L.   

Note that in both these examples, there were many multiplications and divisions required, 
but all we did was add and subtract exponents.  Given that the numbers were all in logarithmic 
notation, the calculations could be done easily without a calculator.  That’s the point!  With 
logarithms, multiplication becomes addition, and division becomes subtraction.   
 
Other considerations 

You may have noticed that Napier, the inventor of logarithms, preceded Euler, who 
presented them as exponents, by more than a hundred years.  If logarithms were not exponents in 
Napier's day, then what were they?  Moreover, how could Napier invent natural logarithms if he 
had no concept of, nor even knew that there was such a thing as, e, which was discovered by 
Euler?  And what is so natural about logarithms with a base of e?  The answers to those 
questions are related to why graphs involving logarithms – graphs that are widely used in 
geology and other science books – are so common and so useful.  These questions will be taken 
up in the next column, CG-3, Progressing Geometrically. 
 
 
Concluding remarks 

We have considered three types of notation.  The one that we use all the time is a 



positional, place-value notation in which each place stands for an order of magnitude.  It is a 
familiar step from this notation to scientific notation in which the order of magnitude of the 
number is expressed logarithmically, as an exponent of ten.  It is only a short step further to 
express the rest of the number as a fractional order of magnitude, thus resulting in a combined 
logarithmic expression, including a decimal fraction, as the exponent of ten.  Such a logarithmic 
notation allows users, including aqueous geochemists, to replace multiplications and divisions 
with additions and subtractions.  Such easing of computation is why logarithms were invented in 
the first place. 
 
Sources and further reading 

The historical material in this column is from a terrific resource for teachers: Historical 
Topics for the Mathematics Classroom by the National Council of Teachers of Mathematics 
(NCTM), 1989 (542 pp., ISBN 0-87353-281-3, $28.00).  Written by nearly a hundred authors 
and edited by a panel of four (John Baumgart et al.), this book includes eight major overviews on 
the history of a branch of mathematics and 120 capsules with details about particular topics.  I 
drew from the following entries: "The history of numbers and numerals" (B.H. Gundlach, p. 18-
36); Babylonian numeration system" (B.D. Vogeli, p. 36-38); "Hindu-Arabic numeration 
system" (C.V. Benner, p. 46-49); "Origin of zero" (L.C. Merick, Jr., p. 49-50); "Al-Khowarizmi" 
(D. Schrader, p. 76-77);  "The history of computation" (H.T. Davis, p. 87-117);  "Decimal 
fractions" (L. Miller and J. Fey, p.137-139); and "Logarithms" (B.J. Yozwiak, p. 142-145). 
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