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Introduction 
The special issue of this journal (Nov. 2000) that was devoted to “Some Great Ideas for 
Geoscience Courses,” included nine ideas under the heading “Earth materials.” Six of 
those papers involved classification (Thomas and Thomas, 2000; Dowse, 2000; Reynolds 
and Semken, 2000; Harper, 2000; Christman, 2000; Niemitz, 2000). Classification of 
rocks and minerals is obviously a necessary component of introductory geology courses. 
 Classification of rocks and minerals is taught in geology courses in order to 
understand geology better and to provide a basis for communication.  Classification of 
rocks and minerals also provides a rich illustration of mathematical concepts involved in 
classification in general.  These concepts, which are staples of courses in logic, occur in 
the mathematics curriculum in courses on discrete mathematics.  

This column is the second on the connection between sets and geological 
terminology.  The context for the first (CG-18) was planets and moons.  The context for 
this one is rocks.   
 
Getting Started 
As discussed in CG-18, a set can be defined either by listing all of its members or by 
stating a requisite property of its members.  In the latter method, the domain of discourse 
(universal set) must also be stated.   

In the examples considered in this column, the domain of discourse will be rocks. 
Thus, to start, we should define the set, R, rocks.  Here are definitions from two standard 
textbooks: 
 

Rock. Any naturally formed, nonliving, firm, and coherent aggregate mass of mineral 
matter that constitutes part of a planet. (Skinner and Porter, 2000, p. G10) 
Rock.  (1) A solid aggregate of mineral grains.  (2)  A solid, naturally occurring mass of 
matter composed of mineral grains, glass, altered organic matter, or combinations of 
these components. (Raymond, 2002, p. 703) 

 



The second definition from Raymond lends itself to an easy symbolic statement.  
Let M be the set, "masses of matter."   In addition, define the following predicate 
functions: 

 
S(x) = "x is solid"; 
N(x) = "x is naturally occurring"; 
Cm(x) = "x contains some mineral grains"; 
Cg(x) = "x contains some glass"; 
Co(x) = "x contains some altered organic matter." 
 

Then, we can write, 
 
 RR = {x∈M | S(x) ∧ N(x) ∧ [Cm(x) ∨ Cg(x) ∨ Co(x)]}    (1) 
 
for rocks according to Raymond's second definition.  ("∧" is the conjunction, "and"; "∨" 
is the inclusive disjunction, "or".  See CG-10.) 
 The criterion "solid," however, is not sufficient to exclude masses of 
unconsolidated materials such as sediment and soils from rocks.  Skinner and Porter's 
"firm and coherent" would serve this purpose, and so we can easily add F(x) for 
 
 F(x) = "x is firm and coherent." 
 
to Equation 1.  Nor does Equation (1) rule out animals and plants.  Therefore, following 
Skinner and Porter, we can require "nonliving."  Thus, let 
 
 L(x) = "x is living."  
 
Then, we can define rocks as: 
   
 R = {x∈M | S(x) ∧ F(x) ∧ ~L(x) ∧ N(x) ∧ [Cm(x) ∨ Cg(x) ∨ Co(x)]}  (2) 
 
("~" is the negation, "not".  See CG-10.) 
 Equation 2 is our definition of rock. 
 
Subsets and Complements 
The complement of a set consists of all the elements of the domain that are not members 
of the set.  For example, consider the set RI defined by 
 

 RI = {x∈R | x formed from a magma} ,    (3) 
 
the set of all igneous rocks. RI .  The complement, RI C, is  
 
  RI C = {x∈R | x∉ RI } ,      (4) 
 



the set of all rocks that are not igneous rocks. The two sets RI and RI C are illustrated in 
Figure 1.  RI includes granite, basalt, anorthosite, and many other rocks.  RI C includes 
limestone, sandstone, slate, and many other rocks. 
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Figure 1.  The set of igneous rocks, RI, including 
three of its members, and the complement of 
igneous rocks, RI C, including seven of its members.  

 
 A subset of R consists only of elements of R.  Therefore, RI and RI C are both 
subsets of R.  This is written 
 
  RI ⊆ R  RI C ⊆ R.        (5) 
 
Symbolically, the subset criterion is 
   

(RI ⊆ R ) ↔ [∀x [(x∈ RI) → (x∈R)]     (6) 
 
("↔" is the biconditional, if and only if; "∀" is the quantifier, "all"; "→" is the 
conditional, "if … then".)  
 RI is a proper subset of R if all of the elements of RI are elements of R and some 
elements of R are not included in RI.  Therefore, RI and RI C also are proper subsets of R.  
This is written 
 
  RI ⊂ R  RI C ⊂ R.        (7) 
 
Symbolically, the criterion for proper subset is 
 

(RI ⊂ R) ↔ [∀x [(x∈ RI) → (x∈R)] ∧ ∃x [(x∈R) ∧ (x∉ RI)]] . (8) 
 
("∃" is the quantifier, "some".) 

As the symbols suggest, the difference between "subset" and "proper subset" is 
that the former admits the possibility that RI = R.  Thus "⊆" says "lies totally within or is 
equal to," whereas "⊂" says "lies totally within."  More explicitly 
 
  (RI ⊆ R ) ↔ [(RI ⊂ R) ∨ (RI = R)] .     (9)  
 



 The null set (∅) and the domain are both considered subsets of the domain.  To 
illustrate how this works, consider the subset of RI
 
  RI,Ol,Qtz = {x∈ RI | x contains olivine and quartz}   (10) 
 
the set of all igneous rocks that contain both olivine and quartz.  Absent any specialized 
knowledge, we can say 
 
  RI,Ol,Qtz ⊆ RI  RI,Ol,Qtz

C ⊆ RI .    (11) 
 
But, as geologists, we also know (from Bowen's reaction series) that olivine and quartz 
will not occur together in igneous rocks.  Therefore, we know that  
 
  RI,Ol,Qtz =∅  RI,Ol,Qtz

C = RI     (12) 
 
(i.e., RI,Ol,Qtz consists of exactly the same elements as ∅, and RI,Ol,Qtz

C consists of exactly 
the same elements as RI).  By substituting Equations 12 into Equations 11, we have it that 
∅ is a subset of RI, and RI is a subset of RI.   

This example also illustrates that calling a set a proper subset requires more 
information than calling it a subset.   
 I am belaboring the distinction between "subset" and "proper subset" because 
many geologists instinctively think "subset" means "totally contained within."   
 
Combination of Sets 
Two sets can be combined in a variety of ways.  To illustrate this, we will use two sets 
within R (Table 1):  
  
 RPerm = {x∈R | x was formed during the Permian Period.},   (13) 
 
the set of all rocks of Permian age, and  
 
 RAriz = {x∈R | x is located in Arizona.},     (14) 
 
the set of all rocks in Arizona.  RPerm contains the Kaibab Limestone of Arizona, the 
Phosphoria Formation of Wyoming, the Capitan Limestone of West Texas, and many 
others.  RAriz contains the Kaibab Limestone of Arizona, the Tapeats Sandstone 
(Cambrian) of Arizona, and the Vishnu Schist (Precambrian) of Arizona, and many other 
rocks. 
 
Intersection.  Given two sets, S1 and S2, their intersection S1 ∩ S2 is the set consisting of 
all the elements that are in both S1 and S2.  Thus, the intersection of RPerm and RAriz (Fig. 
2A) is  
 
 RPerm ∩ RAriz = {x∈R | (x∈ RPerm) ∧ (x∈RAriz)}.    (15) 
 



It consists of all the Permian rocks in Arizona (including only the Kaibab Limestone 
among the five examples in Table 1).  
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Figure 2.  Intersection (A), union (B), differences (C 
and D), and symmetric difference of the set of rocks 
of Permian age (RPerm) and the set of rocks located in 
Arizona (RAriz).  Noted members: (1), Kaibab Ls; (2) 
Phosphoria Fm; (3) Capitan Ls; (4) Tapeats Ss; (5) 
Vishnu Schist. 

 
 RPerm RAriz RPerm ∩ 

RAriz

RPerm ∪ 
RAriz

RPerm − 
RAriz

RAriz − 
RPerm

RPerm Δ 
RAriz

Kaibab Ls  × × × ×    
Phosphoria Fm  ×   × ×  × 
Capitan Ls  ×   × ×  × 
Tapeats Ss  ×  ×  × × 
Vishnu Schist   ×  ×  × × 
 

Table 1.  Some elements of RPerm and RAriz and their combinations. 
 
Union.  Given two sets, S1 and S2, their union S1 ∪ S2 is the set consisting of all the 
elements that are in either S1 or S2, or in both S1 and S2.  Thus, the union of RPerm and RAriz 
(Fig. 2B) is 
 
 RPerm ∪ RAriz = {x∈R | (x∈ RPerm) ∨ (x∈RAriz)} .   (16) 



 
It consists of all the rocks of Permian age all over the world plus all the rocks in Arizona 
of any age (including all five examples of Table 1).  
 
Difference.  Given two sets, their difference S1−S2 is the set consisting of all the elements 
that are in S1 but not in S2.  Thus, for any two sets, such as RPerm and RAriz, we have two 
differences: 
 
 RPerm −RAriz = {x∈R | (x∈ RPerm) ∧ (x∉RAriz)}     (17) 
 
 RAriz −RPerm  = {x∈R | (x∈ RAriz) ∧ (x∉ RPerm)}    (18) 
 
RPerm −RAriz (Fig. 2C) consists of all the Permian rocks of the world except those in 
Arizona (including the Phosphoria and the Capitan of Table 1). RAriz −RPerm (Fig. 2D) 
consists of all the rocks in Arizona except those of Permian age (including the Tapeats 
Sandstone and the Vishnu Schist of Table 1). 
 From these definitions, the complement of a set can be viewed as the domain less 
the set. Thus, for R, 
  
 RC = M − R          (19) 
 
Also, using RPerm and RAriz, there is the following relationship between difference and 
union that follows from the definitions (Equations 16 and 17):  
 
 (RPerm − RAriz) ∪ RAriz = RPerm ∪ RAriz      (20) 
 
(compare with Figs. 2B and 2C).  Moreover, again using RPerm and RAriz and basic 
definitions (Equations 15 and 17), the difference can be written in terms of the 
intersection: 
 
 RPerm − RAriz = RPerm − (RPerm ∩ RAriz)       (21) 
 
(compare with  Figs. 2A and 2C). 
 
Symmetric difference.  Given two sets, their symmetric difference S1 Δ S2 is the set 
consisting of all the elements that are in S1 or S2 but not in both (Fig. 2E). Thus, using 
RPerm and RAriz again, 
 
 RAriz Δ RPerm  = {x∈R | [(x∈RAriz) ∨ (x∈RPerm)] ∧ ~ [(x∈RAriz) ∧ (x∈RPerm)]}  (22) 
 
that is, all the Permian rocks in the world and all the rocks in Arizona except the Permian 
rocks in Arizona.   (This combination includes the five examples of Table 1 less the 
Kaibab Limestone.)  An alternative way of writing Equation 22 is  
 
 RAriz Δ RPerm  = {x∈R | [x∈ (RAriz ∪RPerm)] ∧ [x∉ (RAriz ∩ RPerm)]}.  (23) 
 



Thus,  
RAriz Δ RPerm  = (RAriz ∪RPerm) − (RAriz ∩ RPerm).    (24)  

 
Moreover, the symmetric difference is the union of the two (asymmetric) differences: 
 
 RAriz Δ RPerm  = (RAriz − RPerm) ∪ (RPerm − RAriz).    (25) 
 
Partitions 
Ideally, when one sets up a classification system the domain is already known, and one 
can proceed to partition it into non-overlapping classes.  This can be called classification 
by subdivision. 

Often in geology, however, the domain is being discovered as the terminology is 
being developed.  Classes are named as they are encountered.  This can be called 
classification by sorting.  It is much like separating objects into different piles as one 
draws them out of a grab bag not knowing what kinds of objects are in the bag. 

Classification by sorting typically partitions the domain in a different way than 
one might think. 

 
How Two Definitions Can Produce Four Classes.   Suppose, for example, you make 
two explicit definitions for classes (sets) within a larger family of objects (domain).  This  
can easily produce four classes, rather than just the two stipulated by the definitions. Thus 
the definitions of Equations 13 (RPerm) and 14 (RAriz) actually subdivide R into the 
following four separate classes (Fig. 3): 
 

1. RPerm − RAriz.  Permian rocks that are not in Arizona. 
2. RPerm ∩ RAriz.  Permian rocks in Arizona. 
3. RAriz − RPerm.  Non-Permian rocks in Arizona. 
4. R −RPerm − RAriz.  Non-Permian rocks that are not in Arizona. 
 

R RPerm – Ariz

R RPerm      Ariz

R  R RPerm – Ariz–  
 

Figure 3.  Definition of RPerm and RAriz partition rocks 
into four sets: the intersection, the two differences, 
and the complement of the union. 

 



We get the four classes out of two definitions, of course, because (1) RPerm and 
RAriz overlap, and (2) RPerm and RAriz do not cover all of the possibilities.  In other words: 
(1) the two defined sets are not mutually exclusive, and (2) they are not exhaustive of R  
Two defined classes are mutually exclusive if their intersection is null.  Defined classes 
are exhaustive if their union equals the domain.  In the language of sets, mutually 
exclusive sets that exhaust the domain compose a partition. A partition (Fig 4) can be 
pictured as a patchwork quilt (Johnson, 1998, p. 67). 
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Figure 4.  A partition of R into six sets. 

 
Mutually Exclusive.  Sets that are mutually exclusive are said to be disjoint.  For 
example, instead of RPerm and RAriz, consider RPerm and RAOB, where  
 

 RAOB = {x ∈ R | x is in the Atlantic Ocean Basin.}   (26) 
 

Absent geologic considerations, we would draw the four possible sets resulting 
from the definitions of RPerm and RAOB (Fig. 5A) as we did for the definitions of RPerm and 
RAriz (Fig. 3).  Before plate tectonics, we would have thought that Figure 5A is the correct 
way to represent RPerm and RAOB.  That is, we would have known that there are rocks that 
are neither Permian nor located in the Atlantic Ocean Basin (the complement of the 
union), and, although no one had ever found them, we would have thought that there are 
Permian rocks in the Atlantic Ocean Basin (the intersection).   

 

A B

RPermRAOB RAOBRPerm

 
Figure 5.  The intersection of RPerm and the set of rocks located in the 
Atlantic Ocean Basin (RAOB) is null; RPerm and RAOB are disjoint. 

 
According to plate tectonics, however, the intersection RPerm ∩ RAOB is null.  RPerm 

and RAOB are disjoint.  Therefore, we can draw them as in Figure 5B.  If it ever turns out 
that RPerm ∩ RAOB is not null, then it will be back to the drawing board for plate tectonics. 

 



Making a partition.  Four sets R1, R2, R3 and R4 form a partition of R if and only if they 
are exhaustive and mutually exclusive.  The straightforward way of designing a partition 
– and geologists try to do this all the time – is to subdivide the domain by segmenting one 
or more scales.  One obvious example for R is to divide it according to age.  For example: 
the following four sets provide a partition of R: 

 
RPreC = {x ∈ R | x is Precambrian in age} 
RPaleoz = {x ∈ R | x is Paleozoic in age} 
RMesoz = {x ∈ R | x is Mesozoic in age} 
RCenoz = {x ∈ R | x is Cenozoic in age} 

 
They provide a partition because it is impossible for a single rock to have more than one 
age of origin (mutually exclusive) and the entire geologic time scale is covered 
(exhaustive). 
 Defining a set immediately establishes a partition of the domain into the set and 
its complement.   For example, RI (igneous rocks) and RI

C  (non-igneous rocks) (Fig. 1) 
form a partition of R.  RPreC (Precambrian rocks) and RPreC

C (Phanerozoic rocks) also 
form a partition of R.  The subdivision of rocks by origin (RI and RI

C) is completely 
independent of the subdivision by age (RPreC and RPreC

C).  The two subdivisions, 
therefore, occur along separate dimensions.  They can be used as classes on the margins 
(row labels and column labels) of a bilateral classification scheme (Fig. 6).  The four 
intersections of rows and columns form a partition of R: Phanerozoic igneous rocks 
(upper left cell of Fig. 6); Phanerozoic non-igneous rocks (upper right); Precambrian 
igneous rocks (lower left); Precambrian non-igneous rocks (lower right). 
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Figure 6.  Igneous and non-igneous rocks partition 
rocks (columns), as do Precambrian and 
Phanerozoic rocks (rows).  The cells formed by the 
intersections of the rows and columns form a 
partition. 

 
 RPreC

C is the same as the union of RPaleoz, RMesoz, and RCenoz.  In contrast, RI
C is not 

the same as the union of sedimentary rocks and metamorphic rocks, because igneous 
rocks, sedimentary rocks, and metamorphic rocks do not partition rocks (next column). 
 
De Morgan's Laws of Logic  
 George Boole (1815-1864), the English logician who created the algebra of logic 
and sets, was a self-taught mathematician.   Hollingdale (1989) gives an account of how 
Boole, needing to support his parents, became an elementary school teacher at age 16 
after teaching himself Latin and Greek.  At 19 (the time of Lyell's Principles of Geology 



[1830], and while Darwin was aboard the Beagle [1831-1836]), young George opened a 
school of his own.  Then, according to Hollendale (1989, p. 342): 
 

The need to teach his pupils mathematics aroused his interest in the subject; his 
innate ability enabled him to read and to understand, entirely on his own, some of 
the most difficult works of such masters as Laplace and Lagrange. It was not 
long before this remarkable young man was making discoveries of his own, 
mainly in the field of what we now call 'abstract algebra'. 

 
 Boole's seminal treatise (1854, five years before Darwin's Origin) was An 
Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories 
of Logic and Probabilities.  The work was continued after his death by his friend 
Augustus De Morgan (1806-1871), the immensely influential Professor of Mathematics 
at University College London; Benjamin Peirce (1809-1880), the Harvard mathematician 
and astronomer who determined the orbit and perturbations of the newly discovered 
Neptune; and Peirce's son, Charles Sanders Peirce (1839-1914), the American 
geophysicist, logician, and philosopher (see CG-18).   

De Morgan was one of the most highly regarded mathematicians in Britain, partly 
for his innovative research in logic, but mainly because he was a great mathematics 
teacher.  According to Rice (1999), 
 

(At University College), he single-handedly delivered courses on mathematics to 
a generation of undergraduates for a third of a century.  Because he was in charge 
of mathematical tuition at the leading higher educational institutional in his 
nation's capital, he was a formative influence on numerous mathematicians, 
scientists, and other prominent intellectual figures of the Victorian period. 

 
De Morgan lectured mornings and afternoons, six days a week, and wrote hundreds of 
notebooks that he placed in the University College library to supplement his oral 
instruction.  This tireless and dedicated professor, who twice resigned his position on 
matters of principle, was remembered fondly by his students (Rice, 1999). 
 De Morgan and Benjamin Peirce discovered the "laws of duality" (Hollingdale, 
1989, p. 348) that relate negations, conjunctions and disjunctions in the logic of 
propositions, and complements, unions, and intersections in the algebra of sets.  These 
exceedingly useful laws are known as De Morgan's laws to all students of logic and 
discrete mathematics.  

Let p and q be propositions (statements that can be T or F, see CG-10).  Then, the 
two De Morgan Laws for propositions are 

 
 ~(p ∧ q) ↔ ~p ∨ ~q       (27a)  
 ~(p ∨ q) ↔ ~p ∧ ~q .      (27b) 
 

The first statement (Equation 27a) says that the negation of a conjunction is logically 
equivalent to the negations of the individual disjuncts.  The second statement (Equation 
27b) says that the negation of a disjunction is logically equivalent to the negations of the 
individual conjuncts. Both laws are easily proved by means of truth tables (CG-10). 
 Now, let P(x) and Q(x) be predicate functions.  De Morgan's Laws become 



 
 ~[P(x)  ∧ Q(x)] ↔ ~ P(x)  ∨ ~ Q(x)     (28a) 
 ~[P(x)  ∨ Q(x)] ↔ ~ P(x)  ∧ ~ Q(x) .    (28b) 
 

As an example, let x refer to igneous rocks, and define the functions P and Q as 
 
  P(x) = x contains plagioclase.      (29a) 
  Q(x) = x contains olivine.      (29b) 
 
Then, the left-to-right part of Equation 28a says: "If it is not the case that the rock (x) 
contains both plagioclase and olivine, then it lacks one or both of the two minerals.  The 
right-to-left part of the first law says: "If the rock does not contain plagioclase and/or 
does not contain olivine, then its does not contain both minerals."  The left-to-right- part 
of Equation 28b says: "If it is not the case that the rock contains either or both plagioclase 
and olivine, then it does not contain plagioclase and it does not contain olivine."  The 
right-to-left part says: "If the rock lacks plagioclase and lacks olivine, then it cannot be 
said to contain plagioclase and/or olivine." 

In addition to applying the laws (Equations 27) to two predicate functions 
(Equations 28), we can apply the laws to two instances of one predicate function.  For 
example, let x be a crystal in a rock consisting of exactly two crystals (x1 and x2), and 
define the function Q as 
 
  Q(x) = x is olivine.       (30) 
 
Then, applying De Morgan's Laws, 
 

 ~[Q(x1)  ∧ Q(x2)] ↔ ~ Q(x1)  ∨ ~ Q(x2)    (31a)  
 ~[Q(x1)  ∨ Q(x2)] ↔ ~ Q(x1)  ∧ ~ Q(x2).    (31b) 
 

According to Equation 31a, "It is not the case that both crystals are olivine" is logically 
equivalent to "either the first crystal is not olivine, or the second is not olivine, or they 
both are not olivine."  According to Equation 31b, "It is not the case that one or the other 
or both of the crystals are olivine" is logically equivalent to "The first crystal is not 
olivine and the second crystal is not olivine." 
 Equations 31 can be generalized to a rock consisting of n crystals.  Thus: 
 

~[Q(x1)∧Q(x2) ∧… ∧Q(xn)] ↔ ~Q(x1)∨ ~ Q(x2)∨…∨~Q(xn)   (32a) 
~[Q(x1) ∨ Q(x2)∨…∨ Q(xn)] ↔ ~ Q(x1) ∧ ~ Q(x2) ∧ …∧~Q(xn) . (32b) 
 

The left-hand side of Equation 32a says "it is not the case that all of the crystals are 
olivine."  The right-hand side of the Equation 32a says, "at least one of the crystals is not 
olivine," (or "some of the crystals are not olivine").  The left-hand side of Equation 32b 
says, "it is not the case that at least one of the crystals is olivine.”  The right-hand side of 
Equation 32b says, "none of the crystals is olivine" (or "each of the crystals is not 
olivine," or "every one of the crystals is not olivine.") 



 We can use universal and existential quantifiers (CG-18) for statements involving 
"all of the crystals" and "at least one of the crystals," respectively.  Thus Equations 32 
can be rewritten as 
 
 ~[∀x Q(x)] ↔ [∃x ~Q(x)]       (33a) 

~[∃x Q(x)] ↔ [∀x ~Q(x)]       (33b) 
 
The first says "not all are is logically the same as some are not."  The second says "not 
some are is logically the same as all are not."   
 
Textural Terms for Igneous Rocks.  The textural terms aphanitic and phaneritic are 
familiar to everyone who has taken introductory physical geology. The terms, however, 
are used inconsistently in standard textbooks.  Depending on how they are defined, they 
may or may not partition the set of igneous rocks.  Confusion on this point illustrates the 
important logical principle that opposite is not the same as negation. 

One does not have to search far to find the logical inconsistency.  The first three 
books I picked up to find definitions were Raymond (2002), Skinner and Porter (2000) 
and Ehlers and Blatt (1982). 
 Raymond has the following definitions in his glossary: 
 

Aphanitic.  A descriptive term meaning that the grains in a rock are too small to 
see or identify with either the unaided eye or a low-power lens. 
Phaneritic.  A descriptive term applied to crystalline materials in which grains 
can be discerned without the aid of a microscope. 

 
 Skinner and Porter do not include the terms in their glossary, but they do have 
aphanite and phanerite: 
 

Aphanite.  An igneous rock in which the constituent mineral grains are so small 
they can only be seen clearly by using some kind of magnification.   
Phanerite.  An igneous rock in which the constituent mineral grains are readily 
visible to the unaided eye. 

 
Ehlers and Blatt (1982) do not have a glossary, but say the following about the 

two textural terms in the context of features of igneous rocks to be seen in hand samples: 
 
The first distinction to be made is whether or not individual mineral grains can be 
seen. If the mineral grains can be seen the rock is classified as phaneritic; if not, 
it is aphanitic.    
 

 One of the areas of inconsistency in these definitions is the kind of rocks the 
words are applied to.  By tradition, the words apply to igneous rocks.  By Raymond's 
definitions, aphanitic can be applied to rocks in general, and phaneritic can be applied to 
crystalline (as opposed to granular) rocks.  Thus, according to these definitions, aphanitic 
rocks could include shale, fine-grained limestone, chert, and slate, as well as basalt, and 
phaneritic rocks could include coarse marble, as well as granite.  This is not the 
inconsistency I am interested in, however.   



 I am interested in the large differences in meanings implied by seemingly small 
differences in wording, such as the presence and absence of the word the (as in "the 
grains" in Raymond's definition of aphanitic).  To see the logical inconsistencies that 
result from such differences, we can write the defining criteria symbolically.  Thus, let y 
refer to constituent grains, and define the predicate function V(y) by 
 

V(y) = y can be seen without a hand lens.    (34) 
 
Then the various criteria are: 
 
• Aphanitic according to Raymond and to Skinner and Porter: the constituent grains 

are not visible, 
 ∀y ~V(y).        (35) 

 
• Aphanitic according to Ehlers and Blatt: not all of the constituent grains are visible,   
 

~[∀y V(y)].        (36) 
 
• Phaneritic according to Skinner and Porter and to Ehlers and Blatt: the constituent 

grains are visible,  
∀y V(y).        (37) 

 
• Phaneritic according to Raymond: some constituent grains are visible, 

∃y V(y).        (38) 
 
How do these criteria compare to each other?  
 Clearly Statements 36 and 37 are direct negations of each other.  Applying the 
second De Morgan law (Equation 33b) to Statement 35 produces 
 
  ∀y ~V(y) = ~[∃y ~ ~ V(y)], 
 
which, after applying the Law of Double Negation to the right side, becomes 
 
  ∀y ~V(y) = ~[∃y V(y)] .      (39) 
 
Thus by Equation 39, Statements 35 and 38 are also negations of each other.  Meanwhile, 
the first De Morgan law (Equation 33a) applied to Statement 36 produces  
 
  ~[∀y V(y)] = ∃y ~V(y) ,       (40) 
 
which shows that Statement 36 can be stated alternatively as "some constituent grains are 
not visible." 
 The four statements (35-38), therefore, differ in a very classic way.  Statement 37 
is the universal affirmative proposition ("all grains are visible" in this example).  
Statement 35 is the universal negative proposition ("no grains are visible").  Statement 38 
is the existential affirmative proposition ("some grains are visible").  Statement 36 is the 



existential negative ("some grains are not visible").  These four propositions (labeled A, 
E, I, and O, respectively, in classic categorical logic) are at the corners of the famous 
square of opposition (Fig. 7A) dating back to Aristotle.   
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Figure 7.  Square of opposition using the classic categorical propositions (A) and 
illustrated by the three different definitions of aphanitic and phaneritic (B). 

 
In the traditional language of categorical propositions, the propositions across the 

diagonals of the square of opposition are contradictories.  Universal propositions at 
horizontally opposite corners are contraries.  

Thus (Fig. 7B) Raymond's aphanitic and phaneritic are contradictories (i.e., 
negations).  Ehlers and Blatt's aphanitic and phaneritic are also contradictories 
(negations), but in a different way.  Skinner and Porter's aphanitic and phaneritic are not 
contradictories, but rather contraries (opposites).  It is in this way that usage of the terms 
aphanitic and phaneritic illustrate the confusion between negations ("nots") and 
opposites. 
 
Textural Partition of Igneous Rocks.  Contradictories (negations) can be used to 
partition a domain into two sets.  If there are more than two elements in the domain, 
contraries (opposites) will not partition the domain.  We can illustrate this concept by 
making sets from the various definitions of aphanitic and phaneritic.   
 First, let C(x,y) be the predicate function, 
   

C(x,y) = y is contained in a hand sample of x.   (41) 
 
Then we can define the following four sets. 
 
• The set of igneous rocks in which the constituent grains are not visible: 
 

RI,A1 = {x ∈ RI | ∀y [C(x,y) → ~V(y)]}.    (42) 
 



This is the first definition of aphanitic igneous rocks (aphanites) -- using the criterion of 
Raymond and of Skinner and Porter.   
 
• The set of igneous rocks in which not all of the constituent grains are visible:  
 

RI,A2 = {x ∈ RI | ∃y [C(x,y) ∧ ~V(y)]}.     (43) 
 
This is the second definition of aphanitic ignous rocks -- using the criterion of Ehlers and 
Blatt. 
 
• The set of igneous rocks in which the constituent grains are visible:   
 

RI,P1 = {x ∈ RI | ∀y [C(x,y) → V(y)]}     (44) 
 
This is the first definition of phaneritic igneous rocks (phanerites) -- using the criterion of 
Skinner and Porter and of Ehlers and Blatt.   
 
• The set of igneous rocks in which some constituent grains are visible: 
 

RI,P2 = {x ∈ RI | ∃y [C(x,y) ∧ V(y)]}     (45) 
 
This is the second definition of phaneritic igneous rocks -- using the criterion of 
Raymond.  
 These sets are shown on Figure 8.  Raymond's pair of definitions partitions the  
igneous rocks one way, and Ehler and Blatt's pair of definitions partitions igneous rocks 
the other way.  Skinner and Porter's pair of definitions (all grains not visible and all 
grains visible) does not partition igneous rocks.  It leaves unnamed the set of porphyritic 
igneous rocks with aphanitic groundmass: 
 
       R3 = {x ∈ RI | [∃y [C(x,y) ∧ V(y)]] ∧ [∃y [C(x,y) ∧ ~V(y)]]},  (46) 
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Figure 8.  How the three different definitions of 
aphanitic and phaneritic igneous rocks partition, or 
fail to partition, the domain.  Ra = Raymond (2002); 
S&P = Skinner and Porter (2000); E&B = Ehlers and 
Blatt (1982). 



 
igneous rocks that contain some grains that are visible and some grains that are not 
visible.   
 To summarize,  
 
• With Raymond's definitions,   

RI,A1 ∪ RI,P2  = RI, and R3 ⊆ RI,P2 
 

• With Ehlers and Blatt's definitions,  
RI,A2 ∪ RI,P1 = RI, and R3 ⊆ RI,A2

• With Skinner and Porter's definitions,  
RI,A1 ∪ RI,P1 ∪ R3 = RI. 
 

The pervasiveness of the conflation of negations and opposites can be illustrated 
within a single source.  In the quotation from Ehlers and Blatt discussed so far, aphanitic 
and phaneritic are negations (contradictories) that partition igneous rocks.  In a different 
part of the book (p. 102), where Ehlers and Blatt discuss the classification of igneous 
rocks, they refer to phaneritic rocks "whose grains are sufficiently coarse to be 
individually distinguishable" and aphanitic rocks "whose grains are too small to be 
individually distinguishable."  This is the distinction made by Skinner and Porter.  It 
treats aphanitic and phaneritic as opposites (contraries).  These criteria will not partition 
igneous rocks. 
 
De Morgan's Laws for Sets 
De Morgan's Laws of Logic can be used with the definitions of complement, union, and 
intersection to derive useful relationships between combinations of sets.  
De Morgan's first law for two sets says that the complement of the intersection is the 
same as the union of the individual complements: 
 

(S1 ∩ S2)C = S1
C ∪ S2

C   .      (47a) 
 
De Morgan's second law for two sets says that the complement of the union is the same 
as the intersection of the individual complements:  
 

(S1 ∪ S2)C = S1
C ∩ S2

C   .      (47b) 
 
Equation 47a corresponds to Equation 27a, about the negation of a conjunction.  Equation 
47b corresponds to Equation 27b, about the negation of a disjunction.  The laws for two 
sets can be generalized to treat more than two sets: 
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 We can explore De Morgan's laws for sets by examining combinations of the set 
of igneous rocks that contain plagioclase and the set of igneous rocks that contain alkali 
feldspar (Kspar and albite).  In order to conform to the classification of the International 
Union of Geological Sciences (IUGG; see Raymond, 2002, Figs. 3.7, 3.11 and Ehlers and 
Blatt, Fig. 4-1), we need to use precise (though long) defining criteria.  Thus for rocks 
that we will refer to simply as "igneous rocks that contain plagioclase", let 
 

RI,Plag = {x ∈ RI | >10% by volume of x is feldspar and >10% of the feldspar in x is 
plagioclase with Ca content >An05}.     (48a) 

 
For rocks that we will refer to as "igneous rocks that contain alkali feldspar," let 
 

RI,Alkspar = {x ∈ RI | >10% by volume of x is feldspar and >10% of the feldspar in x is 
Kspar and/or plagioclase with Ca content ≤ An05}.    (48b) 

 
In order to track the rocks through the various complements and combinations, we 

will consider ten phaneritic igneous rocks as elements of RI.  Thus 
 

RI  = {alkali feldspar granite, granite, granodiorite, tonalite, monzonite, gabbro, 
anorthosite, carbonatite, dunite, pyroxenite, …}.   (49) 

 
Note the ellipsis (…) in Equation 49.  This means that these ten rock types are only 
selected examples.   They are selected because they are in named fields on the IUGS 
classification diagrams, and they are standard in petrology labs. 
 So, here we go: 
Igneous rocks that contain plagioclase include: 
 

RI,Plag = {granite, granodiorite, tonalite, monzonite, gabbro, anorthosite, …}. 
         (50)  

 
Igneous rocks that contain alkali feldspar include: 
 

RI,Alkspar = {alkali feldspar granite, granite, granodiorite, monzonite, …}.  
         (51) 

 
From Equation 50, igneous rocks that do not contain plagioclase include: 
 

RI,Plag
C = {alkali feldspar granite, carbonatite, dunite, pyroxenite, …}.  

         (52) 
 
From Equation 51, igneous rocks that do not contain alkali feldspar include:  
    



 
RI,Alkspar

C = {tonalite, gabbro, anorthosite, carbonatite, dunite, pyroxenite, …}. 
         (53) 

 
From Equations 52 and 53, igneous rocks that do not contain plagioclase AND do not 
contain alkali spar include: 
 

RI,Plag
C ∩ RI,Alkspar

C = {carbonatite, dunite, pyroxenite, …}.    
         (54) 

 
From Equations 52 and 53, igneous rocks that do not contain plagioclase OR do not 
contain alkali spar include: 
 

RI,Plag
C ∪ RI,Alkspar

C = {alkali feldspar granite, tonalite, gabbro, anorthosite, 
carbonatite, dunite, pyroxenite, …}.     (55) 

 
From Equation 50 and 51, igneous rocks that contain both feldspars include: 
 

RI,Plag ∩ RI,Alkspar = {granite, granodiorite, monzonite, …}.    
         (56) 

 
From Equations 50 and 51, igneous rocks that contain at least one feldspar include: 
 

RI,Plag ∪ RI,Alkspar = {alkali feldspar granite, granite, granodiorite, tonalite, 
monzonite, gabbro, anorthosite, …}.     (57) 

 
From Equation 56, igneous rocks that do not contain both feldspars include: 

(RI,Plag
 ∩ RI,Alkspar)C = {alkali feldspar granite, tonalite, gabbro, anorthosite, 
carbonatite, dunite, pyroxenite, …}.     (58) 

 
From Equation 57, igneous rocks that do not contain either feldspar include: 

(RI,Plag
 ∪ RI,Alkspar)C = {dunite, carbonatite, pyroxenite, …}.   (59) 

 
 For De Morgan's first law for sets, compare the sets in Equations 55 and 58: the 
set of igneous rocks that do not contain both feldspars (i.e., for which it is not the case 
that they contain both feldspars) consists of igneous rocks that (a) do not contain 
plagioclase and/or (b) do not contain alkali feldspar.  For the second law compare the sets 
in Equations 54 and 59: the set of igneous rocks that do not contain either feldspar 
consists of igneous rocks that (a) do not contain plagioclase and (b) do not contain alkali 
feldspar.   
 
Concluding Remark 
In the 2001 Almanac issue of the Chronicle of Higher Education, a table reports that 
>99% of the faculty at American colleges and universities believe that one of their 
responsibilities is to encourage students to think.  According to Durant (1953, p. 58), 
"logic means simply the art and method of correct thinking."  Boole entitled his 



masterpiece on logic and sets, The Laws of Thought.  The connection between 
terminology, classification, sets, and thinking is clear.  The extensive terminology of 
geology in general, and of rocks in particular, provides a rich vein in which to mine this 
connection.  I can't help but to think, too, that developing this connection would lead to 
improved communication – and thinking – about geology.  Giving students experience in 
"the art and method of correct thinking" promotes a habit of mind that can be applied far 
beyond the classroom and far beyond geology.   
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