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Topics this issue –  
• Mathematics: algebra -- polynomial and transcendental functions; calculus -- 

differential, derivative, finite difference.  
• Geology: velocity equation; Stokes’ law; dip angle; free-air gravity correction. 
 
Introduction 
 One of the most important concepts in first-year calculus is the distinction 
between differentials and derivatives.  A differential is an infinitesimally small amount.  
A derivative is a rate of change.  Given a function f(x), an infinitesimally small change in 
the dependent variable (f) is brought about by an infinitesimally small change in the 
independent variable (x).  The derivative )(xf ′ can be viewed as a ratio of those 
infinitesimal changes.   

This is the calculus of Leibniz (1646-1716), John Bernoulli (1667-1748), and 
Euler (1707-1783).  Thus, the derivative of f with respect to x can be written 
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where the right hand side is the ratio of the two infinitesimals, df and dx.  In the calculus 
of the Leibnizian tradition, this ratio is called the differential quotient (e.g., Thompson, 
1987), and the two differentials can be separated.  Thus, multiplying Equation (1a) by dx,  
 
  .        (1b) dxxfdf )(′=
 
Equation 1b articulates the conceptual difference between a differential and a derivative.  
The df is the infinitesimal change in h brought about by the infinitesimal change dx in x.  
The derivative , or df/dx, is the rate of change of f with respect to x. )(xf ′
 The trouble with this intuitive notion is that differentials and infinitesimal 
increments are "evanescent" quantities – as they were called in a withering 1734 essay by 
George Berkeley (1685-1753), an Irish bishop and philosopher who exposed logical 
inconsistencies underpinning intuitive calculus (Bell, 1945, Chap.13; Edwards 1979, 
p.292-299).  With d’Alembert (1717-1783), Lagrange (1736-1813) and finally Cauchy 
(1789-1857), a logically consistent calculus was developed, resulting (1821) in Cauchy’s 
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which everyone learns as the "official" definition of derivative 

Equations 1, therefore, hold only in the limit.  They generally do not hold for 
measurable changes in x or f.  In other words, if the limit is removed from Equation 2, the 
equality applies only "approximately."  Taking away the limit and multiplying by Δx 
produces 
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Equation (3a) is sometimes called the finite-difference form of Equation (2).  The delta-
quantities (finite differences) are tangible quantities, whereas the d-quantities 
(differentials) are "evanescent."   
 The subject of this essay is the word "approximately" in the previous paragraph.  
How close are Equations 1b and 3a to each other?   The Taylor series addresses the 
question directly.   Brooke Taylor (1685-1731), a protégé of Newton (1642-1727) and 
contemporary of Berkeley, is sometimes referred to as the inventor of finite differences 
(Bell, 1945, p. 285). 

With the Taylor series we can address a question that should be of great interest to 
anyone who makes calculations from measured quantities: given that there is some 
uncertainty (error) in the measured quantity (x), how much uncertainty (error) is there in 
the calculated value f(x)?  In this column, we will focus on functions of one variable.  In 
the next column, we will consider functions of more than one variable: given 
uncertainties in both x and y, how much uncertainty is propagated into g(x,y)? 
 
The Problem, Topographically Posed 
 Imagine that you are on a hillside.  To limit ourselves to a one-dimensional 
problem, suppose that the hillside slopes upward to the east (x-direction) and that there is 
no slope in the north-south direction (i.e., suppose the topographic contours run north-
south).  We are interested in your elevation, h.  In this situation, h depends only on x – 
thus, h(x).  Suppose you are located a distance of 1200 m from a benchmark taken as the 
origin of your coordinate system; thus, x = 1200 m.  Suppose your elevation is 1125 m, 
and the upward slope is 0.2 (i.e., 20% grade, or 11°). The question is, What is your 
elevation if you walk eastward to x = 1300 m? 
 In more mathematical language, the question can be stated as follows: If a = 1200 
and h(a) = 1125, what is h(x) if x = 1300 and )(xh′ = 0.2?  Or, more generally, what is 
h(x), if you know h(a) and ?  Or, in English, if you know the elevation and slope at 
one point (a), how can you calculate your elevation at a nearby point (x)? 

)(ah′

  
Possible answers.  Because we are given )(ah′ , it is appropriate to recast 

Equation 2 as: 
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Then, removing the limit and rearranging, the expression equivalent to Equation 3 is: 
 
  )()()()( ahaxahxh ′−≈− ,      (5a) 
 
Geologists, familiar with the expression "slope is rise over run," will recognize that 
Equation 5a has the rise [(h(x)-h(a)] on the left and the run (x−a) times the slope [h'(a)] 
on the other.   
 From Equation 5a, we can easily get an equation explicitly for h(x): 
 
  )()()()( ahaxahxh ′−+≈       (5b) 
 
Substituting in values, we get an answer: 
 
  11452.01001125)1300( =∗+≈h  (m)    (6) 
 

Equation 5b amounts to projecting the hillside upward at a constant slope from a 
= 1200 m to x = 1300 m.  Clearly, the answer (1145 m) in Equation 6 is correct if the 
slope (0.2) does not change.  In that case, the profile of the hillside is a straight line with 
the equation: 

 
 )()()()( ahaxahxh ′−+=       (7) 
 

With a = 1200, h(a )= 1125, and h'(a)  = 0.2, Equation 7 is 
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Equation 8 can be used to find the elevation at x = 1300 or at any other location.   
If, however, the slope does change as one moves away from x = 1200, then other 

answers for h(1300) are clearly possible.  For example, here are three other functions for 
which h(1200) = 1125 and h'(1200) = 0.2: 

 
  ,      (9a) 20004.016.1309 xxh −+=
  ,      (9b) 2001.06.2555 xxh −+−=
and   .     (9c) 2003.04.73435 xxh −+−=
 
It is a worthwhile exercise to verify that these functions do satisfy the stipulation that 

= 0.2.   )1200(h′
In the functions of Equations 9, the slope decreases as one goes uphill (increasing 

x) as shown in Figure 1A.  The elevations h(1300) calculated from these equations, 
therefore, are smaller than the value (1145 m) projected from Equation 8 (Table 1).  The 
departure from the projected value increases with the magnitude (absolute value) of the 



coefficient of x2 (Table 1).  This coefficient is related to the rate that the slope changes as 
x increases.   

 

   
Figure 1. Plots of Equations 8 (straight line) and 9 (three 
parabolas) at two scales.  All four lines pass through the 
same point (1200, 1115) with the same slope (0.2). 

 
 

 Straight 
Line 

                        parabolas 
 

 Eqn 8 Eqn 9a Eqn 9b Eqn 9c 
c0 885  309 −555 −3435 
c1 0.2      1.16 2.6 7.4 
c2      −0.0004 −0.001 −0.003 
h(1300) 1145 1141 1135 1115 
R(1300)      −4 −10 −30 
R(1210)      − 0.04 − 0.1 −0.3 
R(1201)      −0.0004 − 0.001 −0.003 

 
Table 1.  The four lines in Figure 1. 

 
An infinitude of parabolas.  The curves of Equations 9 and Figure 1 are all 

convex-upward parabolas.  For the parabola of Equation 9a, the maximum (the top of the 
hill in this analogy) is at x>1300.  For the second parabola (Equation 9b), the maximum 
is at  x =1 300.  For the third (Equation 9c), the maximum is between x = 1200 and x =1 
300, and the parabola is on its way down at x = 1300.   

An infinite number of parabolas can be drawn through the point x = 1200 and 
h(1200)  = 1125 with a slope of 0.2.  They all have the form of  )1200(h′
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which is a second-order polynomial function ("second order" refers to the highest power 
of the independent variable, x).   

The coefficients (ci) of Equation 10 determine the shape and location of the curve 
as can be seen by looking at the three functions of Equations 9 at a smaller scale (Fig. 
1B).  The first coefficient, c0, positions the parabola vertically, because it gives the y-
intercept (where the parabola crosses the y-axis).  The second coefficient, c1, gives the 
slope of the parabola at the y-intercept.  The ratio of two of the coefficients (c1 and c2) 
tells the x-position of the maximum, because, from setting the first derivative equal to 
zero and solving for x, 
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Meanwhile, c2 is proportional to the second derivative, h''(a) and determines how curved 
the parabola is. 
 With the parabolas all passing through the same spot on the hillside [h(1200) = 
1125] with the same slope [  = 0.2], there is only one additional degree of 
freedom in stipulating the values of the three coefficients.  For example, if we specify the 
value of c

)1200(h′

2, then the values of c0 and c1 are completely determined – and thus so is the 
location and shape of the parabola. With the progressive increase of c2 (Table 1), the y-
intercept gets deeper (c0), the slope at  x= 0 gets steeper (c1), and the summit comes 
closer to x =1200 (Equation 11). 

The relationship between the coefficients of parabolas passing through a point (at 
x = a) with a stipulated slope can be found easily by differentiating Equation 10 and 
back-substituting.  Thus, from Equation 10, 
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from which, 
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But we know that, at x = a, the value of the function is h(a) and the value of its derivative 
is .  Then, Equations (10) and (12a) become )(ah′
 
        (12c) )(2
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respectively.  Solving Equation 12d for c1 produces 
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Combining Equations 12c and 12e produces 
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Meanwhile, from Equation 12b, c2 is simply 
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From Equations 12e and 12f one can write down the equation for any parabola 
given a point that it passes through, the value of the slope at that point, and an assumed 
value for c2.  Thus with h(1200) = 1125, h'(1200) = 0.2, and c2 = −0.001, Equation 12e 
becomes 

 
 6.2)001.0)(1200)(2(2.01 =−−=c ,     (13a) 
 

and Equation 12f becomes 
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Substituting these values and c2 = 0.001 into the general form of the parabola (Equation 
10) produces the equation of the sought-for parabola – which is Equation 9b. 
 Although it is interesting to know how to fit a parabola through a point given its 
slope at the point, the chief purpose of this discussion has been to show that the 
coefficients are interrelated.  If one wishes to change the coefficient (c2) representing the 
departure from a straight line, then the other coefficients must adjust to keep the parabola 
passing through the stipulated point with the stipulated slope.   

 
The R-term.  Let's return to the original question, How approximate are 

Equations 3a and 5b? We can answer this question for parabolas moving through the 
identified spot on the hillside.  Equations 3a and 5b predict the uphill elevation based on 
an assumption that the hillside has a straight-line profile.  The approximation comes in 
because the profile is parabolic (in these examples), not linear.  As shown in Figure 1A 
and Table 1, the inaccuracy of the prediction at x = 1300 increases with the magnitude of 
c2.  This inaccuracy is typically referred to in problems such as this as the R-term.  The 
"R" stands for remainder.  We can solve for it explicitly. 
 We can obtain an expression for R by substituting the equations for the 
coefficients (Equations 12d and 12e) into the general equation of the parabola (Equation 
10).  This produces 
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which, with a little algebra, rearranges to 
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Substituting now for c2 from Equation 12g, our expression for h(x) becomes 
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Here is the crucial step: compare Equation 15 to Equation 5b.  Because R is the 

difference between the left and right sides of Equation 5b, 
 

  )]()()([)( ahaxahxhR ′−−−= ,     (16) 
 
R then is  
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from Equations 15 and 16. 
 Equation 17 says, then, that the "approximately" in Equations 3a and 5b is 
determined in part by the magnitude of the second derivative.  Larger second derivatives 
-- larger curvatures of these parabolas -- mean larger departures between the left and right 
sides of those equations.  This point is obvious from Figure 1A. 

Also evident in Figure 1A is the fact that the "approximately" in Equations 3a and 
5b is determined partly too by the distance x−a.  The approximation gets better with 
decreasing x−a, no matter how large the departure from the straight line.  This is seen in 
Equation 17 by the fact that R → 0 as x → a.  At the scale of Figure 1A, the three 
parabolas are indistinguishable from the straight line close to x = 1200.  At x = 1210, for 
example, the elevation from the straight line is 1127.00 m, whereas from the parabolas it 
is 1126.96, 1126.90 and 1126.70 m.  The R-term decreases by a factor of 100 for every 
10-fold decrease in x−a (Equation 17 and Table 1).  
 
Taylor's Series 
 The Taylor series is the representation of a function by a polynomial function, 
where the coefficients of the polynomial are related to the values of the function and its 
derivatives at a particular point, a.  In essence, the Taylor series says that knowledge of 
the values of h and all of its derivatives at one spot on the hillside can be used to predict, 
as accurately as you want, the value of h at any other spot on the hillside.   
 
 Polynomial functions.  The Taylor series representation of a straight line is 
 
  )()()()( ahaxahxh ′−+= ,  
 
which is Equation 7.  The Taylor series representation of a parabola is 
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which is Equation 15.  The Taylor series representation of a cubic function (a third-order 
polynomial) is 
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where 2! and 3! refer to 2-factorial (2∗1) and 3-factorial (3∗2∗1), respectively, and h''' is 
the third derivative. By comparing these three equations it is not difficult to guess that the 
Taylor series representation of an nth-order polynomial function would be: 
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where h(n) refers to the nth derivative. 
 To show that Equations 18 and 19 are correct, it is useful to look at another way 
of getting Equations 7 and 15.  This other approach shows conceptually what is involved 
in projecting h(a) to h(x). 
 Start back at the beginning (Equation 1b): 
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Suppose we know h(a).  Then to find h at some other value of x, we can simply integrate 
between a and x, 
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from which, 
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 If h(x) is a straight line, then h'(x) is constant.  Suppose we know its value at x = 
a.  We can then substitute for )(ah′ )(xh′  in Equation 20b and easily carry out the 
integration, because is a constant.  The result is Equation 7. )(ah′
 If h(x) is not a straight line, then )(xh′  is not a constant and we need to find an 
expression for it.  If we know the second derivative h''(x), we can derive an expression 
for from )(xh′
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which is analogous to Equation 1b. Integrating Equation 21a between a and x produces: 
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Substituting Equation 21b into 20b and performing the integration, we get: 
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The approximation in Equation 5a – the R-term of Equation 16 – is clearly the repeated 
integral in Equation 21c.  We now can refer to it as the R2-term, meaning that it is the 
second derivative integrated twice and represents the remainder between the function and 
its representation by a first-order polynomial.    
 If h(x) is a parabola, then h''(x) is a constant.  Suppose we know its value at x = a.  
Then we can substitute h''(a) for h''(x) in Equation 21c and perform the integration.  Thus 
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Substituting this result into Equation 21c produces Equation 15, the Taylor's series for the 
second-order polynomial (parabola).   
 If h(x) is not a first- or second-order polynomial, the second derivative is not 
constant and so we need to find an expression for it.  As with Equations 20b and 21b, we 
can get an expression from the next higher derivative: 
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Substituting Equation 22a into Equation 21c produces 
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and now we see that the approximation in Equation 5a is the sum of the two repeated 
integrals.  We have already evaluated the first one (Equation 21d), which, substituted in 
Equation 21b produces 
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Equation 22c shows that if a parabola is used to project h(a) to h(x), then the difference 
between the function h(x) and the parabola (second-order polynomial) is the third integral 
form a to x of the third derivative.  Call this difference R3. 



If h(x) is a third-order polynomial, then h'''(x) is a constant, and equal to h'''(a).  
Integrating h'''(a) three times between a and x gives 
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Substituting Equation 22d into Equation 22c produces Equation 18.   
 If h(x) is a fourth-order polynomial, the right-hand side of Equation 22d becomes 
the penultimate term in the series.  The last term is the fourth integral of the (constant) 
fourth derivative: 
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and so we can write down the Taylor series of the fourth-order polynomial.  Obviously, 
this kind of thing can be carried on as long as one would like for an nth-order polynomial 
function (Equation 19). 
 These high-order terms, however, are not significant if x stays very close to a.  As 
x−a goes to zero, the higher-order terms drop out.  The third-order polynomial, for 
example, becomes a good approximation to the fourth-order polynomial; then the 
parabola approximates the third-order polynomial; then the straight line approximates the 
parabola (as in Fig. 1A).  When that happens, Equation 7 is good enough.   
 

The ubiquity of polynomial functions.  Equation 19 applies to a polynomial 
function of order n.  Its importance is not limited to polynomial functions. 
 Derivations of Equation 19 typically start with a statement like "Let f(x) be a 
function with a continuous nth derivative throughout the (closed) interval [a,b]" 
((Sokolnikoff and Redheffer, 1966, p. 36).  Then the nth derivative is integrated n times 
between a and x, where x is any point on [a,b].  This produces a polynomial like that in 
Equation 19 up through the (n-1)th derivative.  The last term, then, is left as  
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which represents the difference between the function and an (n-1)-order polynomial.  
This Rn-term is rewritten in a form due to Lagrange (who followed Taylor by several 
decades), 
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for some ξ in [a,x].   

If f(x) has continuous derivatives of all orders and Rn (Equation 24b) goes to zero 
as n → ∞ for each x on [a,b], then f(x) can be represented by the power series 
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This is Equation 19 for n → ∞, and the implication is that the function can be treated as a 
polynomial.   

Nearly all functions that we are apt to run into have continuous derivatives of all 
orders and can be expanded into Taylor series. Examples include transcendental functions 
such as the exponential function, the sine and cosine functions, the tangent function 
(except at places like ±π/2), and the logarithmic function (for x>0), and binomial 
expansions for negative and fractional exponents.  

Geological examples that are not included are topographic profiles that have cliffs 
and overhangs, and stratal surfaces that are faulted or deformed into kinks or overturned 
folds.  By definition, faults are discontinuous.  Kink folds have a discontinuous first 
derivative.  Cliffs, overhangs and overturned folds are not even functions because a 
function, by definition, is single-valued [has only one value f(x) for each x]. 
 An important exercise in first-year calculus is to represent transcendental 
functions and binomial expansions by Taylor series about a = 0.  This produces well-
known Maclauren series, such as  
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Such series make the point that, given information about the function and its derivatives 
at a point (i.e., zero, in the case of Maclauren series), one can calculate the value of the 
function at any other x, if one is willing to carry enough terms. 
 In the following application of Taylor series, the value of a used in the expansion 
is not zero, but rather some measured value.  In general, we will stick close to a (i.e., x−a 
will be small), so we will not need to carry nearly so many terms. 
 
Error Propagation 
 Suppose we measure a variable x and that its value is a.  Suppose the 
measurement has an uncertainty ("error"), ±εx, and we use the measured value in the 
function, f(x).  The uncertainty εx results in a propagated uncertainty ("error"), εf, in the 
calculated value, f(a).  In other words, 
 
  fafxf ε±= )()( .       (26) 
 
Because εx is small and εf is f(x)−f(a), εf can be equated to the first-derivative term of the 
Taylor series (e.g., Taylor, 1997): 
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Certainly, it is reasonable to assume that εx is small. After all, it is an uncertainty 
term.  Who wants to think about a measured quantity such as 35 ± 25 m? 
 We will now consider some examples from the exercises and problems discussed 
in Computational Geology 6, "Solving Problems" (May 1999). 
 

Example 1.  The first exercise of CG-6 asked for the velocity (v) of the Pacific 
plate given the age of the shield volcanoes at Oahu (2.6 Ma) and western Hawaii (0.43 
Ma) and a separation between them of “about 250 km”.  The answer is obtained from  
 
  ,        (28) tsv /=
 
where s is the displacement (2.5×107 cm), and t is the difference of the two ages 
(2.17×106 years).  The velocity works out to 11.52 cm/yr (with excess digits). 
 Now suppose “about 250 km” means 250 ± 20 km.  What ± term should we attach 
to the calculated velocity?  Applying Equation 27, 
 
  sv sv εε )(′±= .        (29a) 
 
Differentiating Equation 28, 
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[t is a constant in this one-dimensional problem (i.e., v depends only on s)].  Combining 
Equations 29a and 29b produces 
 
  tsv /εε ±= .        (29c) 
 
With εs = ±2.0 ×107 cm and t = 2.17×106 yr, then εv = ±0.92 cm/year.  Thus, 
 
  cm/yr      (30a) 92.052.11 ±=v
 
This is exactly the result we get by substituting the upper and lower limits of the range of 
s directly into Equation 28: 
 
  vupper = (250+20) km / 2.17 m.y. = 12.44 cm/yr   (30b) 
and  vlower = (250-20) km / 2.17 m.y. = 10.60 cm/yr .   (30c) 
 

Example 2.  Another exercise in CG-6 involved the settling velocity (v) of a 
foraminifer using Stokes Law for a falling sphere: 
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where Δρ is the difference in density between the falling particle and the fluid (ρs−ρf); g 
= 981 cm/sec2; μ is the fluid viscosity; and D is the grain diameter.   
 Now let's consider a spherical silt particle with diameter 0.005256 cm (4.25φ) and 
density 2.67 g/cm3 falling through a fluid with density 1.025 g/cm3 and viscosity 0.015 
g/cm-sec.  From Equation 31, v = 0.165088 cm/sec (with excess digits). 
 Suppose there is an uncertainty in D.  Specifically, let εD = ±0.0002 cm, so that 
the sphere diameter is D = 0.005256±0.000200 cm.  What is εv? 
 From Equation 27,  
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Rewriting Equation 31 as 
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a constant.  Equation 32a becomes 
 
  Dv CDεε 2= .        (32c) 
 
Plugging in values for C (5976.833 cm-1sec-1), D and εD, then εv is ±0.012565 cm/sec.  
Thus the sphere's settling velocity is 
 
  cm/sec     (33a) 012565.0165088.0 ±=v
 
to six digits.   
 Using Equation 31 with D+εD and D−εD directly, v = 0.177892 cm/sec for D+εD 
and v = 0.152763 cm/sec for D−εD.  These results are 
 
   cm/sec,      (33b) 012804.0

012325.0165088.0 +
−=v

 
which is not the same as Equation 33a.  Thus, the direct method gives an εv term that isn't 
even symmetric.  The εv term of Equation 33a is an intermediate value that differs in the 
fourth decimal place from the uncertainties in Equation 32b. 
 The discrepancy between the two ways of calculating εv is larger with larger εD.  
For example, let εD = ±0.001 cm.  Then  
 
         (34a) 068801.0

056847.0165088.0 +
−=v

 
by the direct method.  Meanwhile, Equation 32 produces  
 
  cm/sec.     (34b) 062824.0165088.0 ±=v
 
The difference is in the third decimal place. 



 The reason for the discrepancy is that Equation 27 truncates the Taylor series at 
the first-derivative term.  Adding the second-derivative term from Equation 19, and 
carrying the sign of εx through the arithmetic within each term, Equation 27 should be 
replaced by 
 

  2)(
2
1)( xxf afaf εεε ′′+′±= .      (35) 

 
The second term is "+" because εx is squared.  As a result, εf is not symmetric.  The "+" 
error exceeds the "−" error. 
 From Equation 32b, Equation 35 for Stokes' Law becomes 
 
         (36) 22 DDv CCD εεε +±=
 
For εD = ±0.0002 cm, the first term is ±0.012565 (Equation 33a), and the second term is 
+0.000239; the sum of the two terms reproduces the results in Equation 33b exactly.  For 
εD = ±0.001 cm, the first term is ±0.062824 (Equation 34b), and the second term is 
+0.005977.  Their sum reproduces the results in Equation 34a exactly. 
 

Example 3.  In the first example, the function [v(s)] is a first-order polynomial, 
and the direct method produces a calculated uncertainty that is duplicated exactly by the 
first-derivative term of a Taylor's series expansion of the function (Equation 29a).  In the 
second example, the function [v(D)] is a second-order polynomial, and a two-term 
expression (Equation 35) corresponding to the first- and second-derivative terms of a 
Taylor's series expansion exactly produces the propagated uncertainty found by the direct 
method.  Other functions require more terms of the Taylor's series.  Functions such as 
those in Equations 25, for example, lead to an infinite number of terms to calculate the 
propagated uncertainty exactly. 
 For illustration, consider again Example 1 with s = 25×106 cm and t = 2.17×106 
yr.  Now, rather than having the uncertainty in s, we will consider an uncertainty in t.  
Thus the function is v = s/t again, but now t is the variable, and we want εv due to εt. The 
expressions of Equations 27 and 35 need to be extended to 
 

  ....)(
!4

1)(
32

1)(
2
1)( 432 ±+′′′

⋅
±′′+′±= x

iv
xxxf afafafaf εεεεε  (37) 

 
from Equation 19.  Differentiating v = s/t, and substituting derivatives and εt into 
Equation 37 produces 
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 Suppose εt = ±0.01×106 yr.  Then, calculating v for both t = 2.16×106 yr and t = 
2.18×106 yr,  
 



   cm/yr      (39a) 05333675.0
05284742.052074.11 +

−=v
 
Meanwhile, Equation 38 produces 
 
  00000113.000024466.005309554.0 mm +=vε ,   (39b) 
  
which reproduces the uncertainty in Equation 39a to the eighth decimal place. 
 In contrast, εt = ±0.1×106 yr produces 
 
   cm/yr,      (40a) 5565574.0

5075215.052074.11 +
−=v

 
exactly, and the first three terms of Equation 38 are  
 
  0112745982.00244658781.0530909554.0 mm +=vε .  (40b) 
 
The sum of these three terms reproduces the uncertainty in Equation 40a to the fourth 
decimal place. 
 Finally εt = 1×106 yr produces the strongly asymmetric result 
 
   cm/yr      (41a) 8468.9

6343.35207.11 +
−=v

 
to four places.  The first eight terms of the Taylor expansion are 
 
   0234.00508.01103.02394.05196.01275.14466.23091.5 ++++= mmmmvε , (41b) 
 
which gives the correct uncertainty term to only two places. 
 

Discussion of results.  These examples underscore the point that uncertainties in 
the independent variable (x) are supposed to be small if one intends to use Equation 27 to 
find the propagated uncertainty (εv) in f(x).  Equation 27 is an approximation for exactly 
the same reason that Equation 3b is an approximation.  As the uncertainty εx increases, it 
becomes less and less like a "true differential," and so Equation 27 becomes ever more 
approximate.  The larger the uncertainty εx is, the more terms that must be carried in the 
Taylor series to accurately produce εf  to the desired number of places. 
 One way to reduce the need for additional terms is to recognize that εf is produced 
only approximately by Equation 27 and, therefore, we should be satisfied with only one 
or, at most, two significant digits in εf.  Thus for εD = ±0.0002 cm in Example 2, stating 
the result as v = 0.165 ± 0.012 cm/sec represents the range in Equations 33 (using two 
digits for εv, because the last digit of v is "5").  Similarly for εD = ± 0.001 cm, stating v = 
0.165 ± 0.063 cm/sec is appropriate for Equations 34.  For Example 3 and εt = ±0.01×106 
yr, use v = 11.52± 0.05 cm/yr (for Equation 39), and, for εt = ±0.1×106 yr, use 11.5 ± 0.5 
cm/yr (for Equation 40).   Finally the εt = ±1×106 yr in Example 3 is 46% of the value of t 
itself, which is beyond the pale for a differential.  With such large uncertainties, one 
needs to calculate the range from the end points. 



 If one can always find the propagated uncertainty by calculating it directly from 
the endpoints of the range, why even know Equation 27?  There are at least two answers.  
The first is that the result from the one-term Taylor series can be easily folded into more 
complicated calculations involving uncertainties in more than one variable.  This point 
will be discussed in the next Computational Geology. 
 The second answer is that the one-term Taylor series result is easily stated 
formally in the equation to be used in the calculation.  For example, to calculate the plate 
velocity from displacement (s) and travel time (t), don't use Equation 28, but rather 
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from Equation 29c if there is an uncertainty in s (Example 1).  On the other hand, if there 
is an uncertainty in t (Example 3), use 
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from Equation 38.  For a Stokes' Law problem and an uncertainty in D (Example 2), use 
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from Equation 32c. 

By stating the equations in this way, one immediately sees the effect of the 
uncertainty in the independent variable.  Thus a 1% error in measuring the distance 
produces a 1% error in the velocity (Equation 42).  The same is true for a 1% error in 
measuring the travel time (Equation 43): it produces a 1% error in the velocity.  On the 
other hand, a 1% variation in the grain diameter produces a 2% variation in the settling 
velocity calculated by Stokes' Law (Equation 44). 
 

A final problem: Consequences of an error in dip angle.  To illustrate the 
convenience of incorporating the one-term formula for propagated error into the equation 
to calculate the target unknown, we will consider one last problem.  Suppose you are on 
level ground at an outcrop of sandstone overlying limestone.  Suppose the contact strikes 
north-south and dips east at an angle β.  How deep below ground is the contact at a 
distance a = 100 m to the east (i.e., in the direction of dip) given that there is a possible 1° 
error in the measurement of β?  On what does the answer depend?   
 Call the depth b.  Then, remembering that tan(β) = b/a, and that the derivative  
of the tangent is the secant squared, then, from Equation 27, the general relationship is  
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where εβ is in radians.  Equation 45 clearly shows that the consequence of the 1° error 
increases substantially for large dips.  Thus for 10°, 30°, 45°, 60° and 80° dips, the 
answers are 17.6 ± 1.8 m, 58.0 ± 2.3 m, 100 ± 3.5 m, 173 ± 7 m, and 567 ± 58 m, 
respectively.   

But, then, the depth (β) to the contact also increases substantially with depth.  The 
relative uncertainty for the depth (εβ /β) is 
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from Equation 45.  Thus the relative error goes through a minimum at β = 45°.  For dip 
angles of 10°, 30°, 45°, 60° and 80°, the relative errors for the depth are 10%, 4.0%, 
3.5%, 4.0%, and 10%, respectively, for the 1° error in dip.  This result -- unlike the result 
for the absolute uncertainty (εβ) in Equation 46 – is independent of the horizontal 
distance a.  
 
Final Remarks 
 The Taylor series is one of the truly useful tools in first-year calculus.  Its 
usefulness is not surprising given the early history of calculus.  As Stillwell (1989) states 
at the beginning of his chapter on calculus, calculus emerged in the seventeenth century 
as a system of shortcuts to results obtained by more tedious methods for finding areas and 
volumes.  Calculus “is about calculation, after all” (p. 101). [Stillwell's book aims “to 
give a unified view of undergraduate mathematics by approaching the subject through its 
history" (p. vii).] 

Newton understood calculus “as an algebra of infinite series” (Stillwell, 1989, p. 
107).   Newton, and another founder of calculus, James Gregory (1638-1675), started 
their work with interpolation (Stillwell, 1989, p. 123).  They developed the method now 
known as Gregory-Newton interpolation – a standard topic in courses on numerical 
methods.  In that context, they independently discovered the binomial theorem (Newton 
in 1665, Gregory in 1670), which produces a power series.  Taylor derived his series 
expansion as a limiting case of the Gregory-Newton interpolation formula in 1715.  

Euler was “probably the greatest virtuoso of series manipulation” (Stillwell, 1989, 
p. 124).  His textbooks on calculi differentialis (1755) and calculi integralis (1768-1774)  
included Taylors’ theorem “with many applications” (Struik, 1987).   

Speaking of applications, anyone who has had a course in geophysics has heard 
the words “And dropping higher-order terms…” many times.  Typically the setting is a 
derivation in which a derived, but inconvenient, expression is simplified to a more 
workable one.  For example (Fowler, 1990, p. 170), the free-air variation in the 
acceleration due to gravity (g) with elevation (z) is, from Newton's Law of Gravitation,  
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where g0 is gravity at sea level, and R is the radius of the Earth.  The next line is 
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because z<<R.  Thus the change in g due to the increase in radius from R to R+z is 
−2g0z/R (the free-air correction).  Such simplifications apply Taylor's theorem. 

The one-term formula for propagated error (Equation 27) is a similar 
simplification.  So is the statement that the differential of the dependent variable (df) can 
be calculated as the product of the derivative [f'(x)] and the differential of the independent 
variable (dx) (Equation 1b). 
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