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The Vector Cross-Product and the Three-Point Problem 
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Topics this issue --  
• Mathematics: algebra – equation manipulation, linear interpolation, determinants, vectors; 

geometry – areas  of triangles. 
• Geology: three-point problem; geostatistics – point estimation; geochemistry – mixing  lines 

and mixing triangles. 
 
Introduction 
 In CG-12 ("Cramer's Rule and the Three-Point Problem," Sept., 2000), we looked at the 
classic three-point problem of finding the strike and dip of a plane given the location and 
elevation of three points (Fig. 1).  We used Cramer's Rule to find the equation of the plane 
through the three points; the equation of a horizontal line in the plane to find the direction of 
strike; and the gradient of the plane to determine the dip.  Now we will consider a related 
problem: Given the elevation at three points on a plane, what is the elevation at any other point 
on the plane?  The question is one of interpolation.  As we will see, it is the three-dimensional 
upgrade of linear interpolation, which is familiar from school algebra.  It also provides a tool for 
point estimation in geostatistics and mixing problems in geochemistry. 
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Figure 1.  What is the strike and dip of the 
plane passing through these three points? 

 
The Problem 
 A sample problem is shown in Figure 2.  What is the elevation at the point marked by the 
asterisk, where x = 1200 ft and y = 800 ft, given the xyz-coordinates of A, B, and C?  The answer 
is easy because we know, from CG-12, how to find the equation of the plane through A, B, C.  
For this particular case, the equation of the plane is (CG-12, Equation 69) 
 
  .       (1) yxz 407.0488.03110 +−=
 



We need only to substitute the values for x and y into Equation 1 to calculate z.  The result is z = 
2850 ft. 
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Figure 2.  What is the elevation of the point indicated 
by the asterisk on the plane passing through the 
three corners? 

 
 Now let’s consider the calculated result in more detail.  The asterisk is clearly within the 
triangle, and the elevation of the point marked by the asterisk is clearly within the bounds of the 
other three elevations.  Is the elevation an average of some sort? 
 In fact, the result, z = 2850 ft, is close to a simple average of the other three elevations.  The 
average of 3400, 2700, and 2400 is 2833.  Is it just a coincidence that the elevation is so close to 
the average?  Perhaps not, because the asterisk is about at the exact center of the triangle.  The 
center of the triangle (the centroid) is at x = 1200 ft, y = 766.7 ft.  Plugging these central values 
into Equation 1 produces z = 2830 ft to the three significant digits of Equation 1.  So, we can say 
that the elevation at the center of the triangle is the average of the elevation at the three corners, 
and if one is close to the center of the triangle, the elevation is close to the average of the three 
corner elevations.  Is there a way of quantifying this?  I mean, is there a way of determining the 
elevation at a point within the triangle by using an average related to the location of the point? 
 
Understanding the Problem. 
 Consider Figure 3.  Point 1 is at the center of the triangle.  As we discussed, the elevation at 
Point 1 is the average of the elevations of A, B, and C.   
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Figure 3.  How does the elevation of the point located by the 
circled numbers vary from place to place as a function of 
the elevation of the three corners? 
 

 Point 2 is nearly on the line BC and about halfway between B and C.  It is reasonable to 
expect that the elevation at Point 2 would be close to the average of the elevations at B and C.  
We can easily check this conjecture.  The point midway between B and C is at x = 1600 and y =  



550 ft.  Using these values in Equation 1 produces z = 2553 ft, which is equal to the average of 
the elevations of B and C (2550 ft) to within the three significant digits. 
 Point 3 is nearly at A.  It is reasonable to think its elevation will be very nearly that of A.  
 From these considerations of Figure 3, it is clear that we are looking for some sort of 
weighted average, where the elevations in the average are weighted according to their xy-
location.  If the point is close to one of the corners (Point 3), then the elevation at that corner 
should be weighted to dominate in the average.  If the point is equidistant from two corners on 
the line between them (Point 2), the elevation of the corners should be weighted equally, and the 
elevation of the third corner should be weighted with a zero.  If the point is in the center of the 
triangle, the elevations should all be weighted equally. 
 The equation for the weighted mean of the three elevations is: 
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where wi refers to the weights, zi gives the elevations, and the subscripts refer to the corners.  
Because the total weight (ωT) is the sum Σ wi, Equation (2) can be restated as  
 
   CCBBAAave zzzz ωωω ++= ,       (3) 
 
where ωi refers to relative (or normalized) weights, 
 
   Tii ww /=ω .         (4) 
 
We are looking for wA, wB, and wB C, and ωA, ωBB, and ωC.  We need to devise a plan to find how 
these weights vary with the location of the interior point. 
 
Devising a Plan, 1: The Analogous Problem in Two Dimensions 
 As we discussed in CG-12, the plane is the three-dimensional upgrade of a straight line in 
two dimensions, and, when trying to figure out a plane, a lot of good can come from looking at 
an analogous problem for a line. 
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Figure 4.  What is the value of y3 on the straight line 
given the xy-coordinates of two points on the line 
and the value of x3? 

 
 An example of the two-dimensional problem of finding a point on a line between two end-
points is shown in Figure 4.  The two end-points in this case are (400, 2300) and (1600, 3200) for 



(x1, y1) and (x2, y2), respectively.  The question seeks the value of y3, given x3 = 900.  This 
question clearly asks for a linear interpolation.   
 Linear interpolation is easily done with 
 

)( 1313 xxmyy −+= ,        (5)    
 
where m is the slope of the line connecting the end-points,  
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Thus the equation for linear interpolation can be written as 
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 Equation 7 can be rearranged (Appendix) to produce 
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Thus y3 is the weighted average of y1 and y2, where the weights are 
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and the sum of the weights is  
   
   .         (10) 12 xxwT −=
 
The relative weights, therefore, are 
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The weighted average is 
 
   22113 yyy ωω += .        (12) 
 
 Thus linear interpolation is the same as finding the weighted average of the two end-points 
where the weights correspond to Δx-distances between the various points.  As shown by 
Equations 11, ω1 approaches 1 and ω2 approaches zero as the intermediate point (x3,y3) 
approaches the first end-point (x1,y1).  Similarly, as the point (x3,y3) approaches the other end-
point (x2,y2), ω1 approaches zero, and ω2 approaches 1. 



 A third way of solving the problem is to find the equation of the line in slope-and-intercept 
form (the two-point problem of CG-12, Equation 8), plug in the value of x3, and calculate y3: 
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Equation 13 is simply another rearrangement of Equations 7 and 8.   
 Regardless of which equation one chooses (Equations 7, 8, or 13), the answer to the question 
posed in Figure 4 is y3 = 2675. 
 
Devising a Plan, 2: Upgrading to a Plane 
 Geometrically, the relative weights ω1 and ω2 in Equation 11 are given by ratios of lengths of 
line segments shown in Figure 5.  In Figure 5A, the line segments are parallel to the x-axis and 
correspond directly to the quantities of Equations 9-11.  In Figure 5B, the line segments are 
along the line between the end-points, but clearly (by similar triangles), the ratios of these 
distances along the line are equal to the ratios of the corresponding distances along the x-axis. 
Therefore,  
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Figure 5.  Distances of the intermediate point from 
the end-points (A) in the direction parallel to the x-
axis and (B) along the line. 

 
 
How does this upgrade to a plane? 



 We can start by restating Equations 14 to make the geometry of the question even more 
explicit.  Call the two end-points P1 and P2 and the intermediate point P (Fig. 6).  Then, 
Equations 14 become 
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Figure 6.  The general point P on a straight line 
connecting end-points P1 and P2.   

 
respectively, where PP1 , 2PP , and 21PP  are lengths of the line segments, and the weighted 
average corresponding to Equation 8 is 
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Thus the value of y at the intermediate point is the average of the y-values at the end-points, 
weighted according to the length of the opposite line segment relative to the total length.  (The 
same thing can be said in geology lingo. Geologists like the words "proximal" for "close" and 
"distant" for "far".  So, assuming a vantage point close to P1 in Figure 6, one can say that the 
value of y at the intermediate point is the y-value at the proximal point times the length of the 
distal line segment relative to the total distance plus the y-value at the distal point times the 
length of the proximal line segment relative to the total distance.)  How does this geometric 
version of interpolation upgrade to a plane? 
 A geometric approach to the question is shown in Figure 7.  In analogy to Figure 6 and 
Equation 16, we can conjecture that, given the xy-locations of A, B, and C; the z-values of P1, P2, 
and P3; and the xy-location of P within the triangle, then the z-value at P is the weighted average 
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where AP2PP3, AP3PP1, AP1PP2, and AP1P2P3 refer to the areas of the triangles indicated in the 
subscripts.  In other words, according to this conjecture, the relative weight for any given 
elevation is the fraction of the whole triangle that is covered by the area of the distal constituent 
triangle. 
 



   

y

X

P1

P2

P3P

 
Figure 7.  The general point P on a plane 
passing through P1, P2 and P3.  The triangle 
P2PP3 is opposite the corner P1. 

 
 To prove this conjecture, we need to be able to calculate the area of triangles.  The vector 
cross-product is well suited for this purpose. 
 
Devising a Plan, 3: About the Cross-Product 
 In Computational Geology 4 ("Mapping with Vectors," Jan, 1999), we went over the basics 
of vectors: unit vectors; the calculation of magnitude and direction of a vector from its 
components; addition and subtraction of vectors; and one of the ways of multiplying two vectors.  
The multiplication that we discussed in CG-4 is the dot-product, u⋅v, where u and v are vectors, 
and they are indicated as such by either bolding the font or adding an arrow overhead. The dot 
product results in a scalar and is commonly called the scalar product.  It is useful for, among 
other things, finding angles.   
 The other type of vector multiplication is the cross-product, denoted by u×v.  The cross-
product results in a vector and is commonly called the vector product.  It is useful for, among 
other things, finding areas of triangles. 
 The cross-product u×v is defined as the vector with (a) magnitude equal to the area of the 
parallelogram that has u and v as sides (Fig. 8), and (b) direction given by the famous right-hand 
rule.  The right-hand rule says that u×v is (a) perpendicular to the plane containing u and v and 
(b) oriented in the same direction as your thumb when you hold your right hand in a vertical 
plane above u with fingers extended in the direction of u, and then curl your fingers toward v. 
(Note that if you curl the fingers of your right hand from v to u, your thumb points the other 
way; hence u×v = –(u×v), meaning they have the same magnitude but opposite direction.) 
 From the definition of the vector product, the magnitude of u×v is: 
 
   |u×v| = |u| |v| sinθuv,        (18) 
 
where |u| and |v| are the magnitudes of u and v, respectively, and θuv is the angle between u and 
v.  That means that the area of the triangle formed from the vectors u and v as shown in the 
lower panel of Figure 8 is 1/2 of the magnitude of u×v: 
 
   Atriangle = |u × v| / 2,        (19) 
 
where the vertical bars denote the magnitude of the vector cross-product. 
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Figure 8.  The vector cross-product u × v has 
magnitude equal to the area of a 
parallelogram with sides |u| and |v| and is 
perpendicular to the plane containing u and 
v.  Half the magnitude of u × v is the area of a 
triangle with sides |u| and |v|. 

 
 The magnitude of u×v typically is not calculated from Equation 18 but rather from a 
determinant consisting of unit vectors and the components of u and v. Determinants were 
reviewed in CG-12 in connection with Cramer's Rule and the solution of simultaneous linear 
equations.  Vector products are another place where determinants are very useful.   
 The determinant expression for a vector product is as follows.  The vectors u and v are 
individually represented as the vector sum of their component vectors: 
 
   u = ux i + uy j +uz k and  v = vx i + vy j +vz k.    (20) 

 
Then 
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Expanding this 3×3 determinant across its top row (CG-12, Equation 35) produces 
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which makes evident the vector components of the cross-product.  Even more explicitly, the 2×2 
determinants can be expanded to give: 
 
   u × v = (uyvz − uzvy) i − (uxvz −  uzvx) j + (uxvy − uyvx) k.   (23a) 
 
from which,  u × v = (uyvz − uzvy) i + (uzvx − uxvz) j + (uxvy − uyvx) k.   (23b) 
 
(note the changes in the second term). 
 For the special case where both u and v are in the xy-plane, uz and vz are zero.  In that case, 
Equations 22 and 23 become 
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From Equation 24, the magnitude of the cross-product of two vectors in the xy-plane, then, is 
 
   | u × v | = uxvy - uyvx.        (25) 
 
From Equations 19 and 25, the area of the triangle formed on two sides by vectors u and v in the 
xy-plane (Fig. 8, lower panel) is 
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Figure 9.  Vectors from P1 to P2 and from P1 to P3. 

 
 
 Equation 26 can easily be recast in terms of the coordinates of the corners P1, P2, and P3, 
located at (x1,y1), (x2,y2), and (x3,y3), respectively (Fig. 9).  Thus, from Equation 20, the two-
dimensional vectors vP1-P2 and vP1-P3 are: 
 
   vP1-P2 = (x2 - x1) i + (y2 - y1) j   and  vP1-P3 = (x3 - x1) i + (y3 - y1) j,  (27) 
 



where vP1-P2 and vP1-P3 are read "the vector from P1 to P2" and "the vector from P1 to P3," 
respectively.  Then 
 
   AP2P1P3 = |(vP1-P2 × vP1-P3)| / 2       (28) 
 
is given in components as  
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Devising a Plan, 4: Finding the Weights 
 With the relationship between the area of triangles and the magnitude of cross- products, the 
areas of the internal triangles in the conjecture of Equation 17 are (Fig. 10A): 
 
   AP2PP3 = |(vP-P2 × vP-P3)| / 2,  
 

 AP3PP1 = |(vP-P3 × vP-P1)| / 2, and  
 
 AP1PP2 = |(vP-P1 × vP-P2)| / 2.       (30) 
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Figure 10.  Vectors along the sides of triangles connecting 
P, P1, P2 and P3. 

 
With the relationship between cross-products and determinants, the areas of the internal triangles 
are (Fig 10B): 
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Equations 17 and 31 provide a means of calculating z at a point within P1P2P3, if our conjecture 
is correct that it is a weighted average of the z-values at the corners. 
 In terms of relative weights, the conjecture of Equation 17 is 
 
   332211 zzzz ωωω ++= ,       (32) 
 
where the relative weights are (Fig. 7): 
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From Equations 31 and 33, and expanding the determinants in Equations 33, the relative weights 
become 
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 In the end, our conjecture comes down to Equations 34.  Are these correct expressions for the 
relative wieghts?  In other words, do Equations 34 together with Equation 32 produce the value 
of z within the triangle? 



 As we said at the outset, there is another (known) way of producing the value of z within the 
triangle, namely plugging the coordinates of P into the equation of the plane found as part of the 
solution of the three-point problem in CG-12.  Does this other way produce the same result? 
 The plan, now, is to manipulate appropriate equations of CG-12 into the form of a weighted 
average and see if the result is equivalent to Equations 32 and 34.  If it is, then we will have 
shown that the z-value in the interior of the triangle is the average of the values at the corners, 
weighted according to the areas of the distal triangles.  
 
Carrying out the Plan 
 Carrying out this plan provides a good exercise in expanding determinants.  Given three sets 
of xy-coordinates – (x1,y1), (x2,y2), and (x3,y3) – the equation of a plane through them is (CG-12, 
Equation 57): 
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an equation that is easy to remember, and certainly well worth it. 
 Expanding the determinant in Equation 35 down the z-column, we get 
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Solving for z, 
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Equation 37 is of the form of Equation 32: 
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where D1, D2, and D3 are the determinants in the numerator of Equation 37, and D is the 
determinant in the denominator.  Expanding the determinants of Equation 37, the ratios in 
Equation 38 are: 
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If you carry out the multiplications indicated in Equations 34, you get the ratios in Equations 39.  
This proves the conjecture.  The relative weights derived from the ratio of cross-products (i.e., 
areas of triangles, Equations 34) are the same as the relative weights derived from the equation 
of the plane (Equations 39). 
 In conclusion, the z-value within the triangle is the weighted average of the values at the 
corner (Equation 32), and the relative weights can be calculated by either of two sets of ratios of 
determinants: 
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The first set of ratios (the column with 2×2 determinants) comes from calculating areas of 
triangles.  The second set (the column with 3×3 determinants) comes from the equation of a 
plane. 
 
Looking Back 
 According to our algebra, we have two ways of calculating the same thing.  We can check 
our algebra by using both techniques to solve the same exercise.   
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Figure 11.  What is the elevation at the asterisk, which is not 
at the center, an edge, or corner of the triangle? 

 
 A sample exercise is shown in Figure 11.  The xyz-values at the corners are the same as in 
Figures 1-3.  The asterisk marks the xy-location of an interior location.   What do our two 
methods produce for the z-value at this interior location? 
 The spreadsheet in Figure 12 finds an answer by both techniques.  Down to Row 32, this 
spreadsheet is the same as the one solving the three-point problem in CG-12 (CG-12, Fig. 11), 
except that Row 10 has been added for the interior point, and Cell H32 has been added for the 
calculated z-value at the interior point.  The value at H32 is calculated from the slopes-and-
intercept form of the equation of the plane (CG-12, Equation 48), 
 
   ,        (43) ymxmzz yxO ++=
 
and the values in cells D30-D32.  The same result is produced at H53, which comes from the 
weighted average and areas of the distal triangles discussed in this essay. 
 
Point Estimation in Geostatistics 
 An Introduction to Applied Geostatistics by E.H. Isaaks and R.M. Srivastava (Oxford 
University Press, 1989, 561 pp) is a delightfully clearly written book explaining statistical tools 
used to analyze spatial data. Except for notation, Equation 11.6 of that book is the same as 
Equation 17 of this essay.  Whereas Equation 17 uses the letter z for elevations at the corners and 
interior point of the triangle, Equation 11.6 of Applied Geostatistics uses the letter v, representing 
a quantity that has units of ppm.   
 Referring to Equation 11.6, the authors say (p. 255), "Our triangulation estimate, therefore, is 
a weighted linear combination in which each value is weighted according to the area of the 
opposite triangle.  This weighting agrees with the common intuition that closer points should 
receive greater weights".  This material is included under the heading "Triangulation" in their 



chapter titled "Point Estimation."   Triangulation is one of four methods of point estimation 
methods discussed in that chapter. 
 

   

B C D E F G H I
3 THE THREE-POINT ESTIMATION PROBLEM IN FIGURE 11
4
5 I.  Coordinates of the three corners and interior point
6 x y z
7 A 400 1200 3400
8 B 1000 200 2700
9 C 2200 900 2400
10 D 700 1000 ???
11
12 II. Liinear coefficients for the equation of the plane
13 1200 3400 1
14 a =  200 2700 1 = 790000
15 900 2400 1
16
17 400 3400 1
18 b = - 1000 2700 1 = -660000
19 2200 2400 1
20
21 400 1200 1
22 c =  1000 200 1 = 1620000
23 2200 900 1
24
25 400 1200 3400
26 d = - 1000 200 2700 = -5032000000
27 2200 900 2400
28
29 III.  Slopes and intercept for the equation of a plane
30 z0= 3106.173
31 mx= -0.487654
32 my= 0.407407 THEN zD = 3172 (Eqn 43)
33
34 IV.  Areas of triangles (Equations 29, 31)
35
36 total A-B-C 600 -1000
37 1800 -300 = 810,000
38
39 opp. A: B-D-C 300 -800
40 1500 -100 = 585,000
41
42 opp. B: A-D-C 1500 -100
43 -300 200 = 135,000
44
45 opp. C: A-D-B -300 200
46 300 -800 = 90,000
47
48 Sum of the three internal triangles = 810,000
49
50 V.  Relative weights (Equations 33)
51 A 0.722
52 B 0.167
53 C 0.111 THEN zD = 3172 (Eqn 32)   
 
Figure 12.  Spreadsheet solving the problem posed in Figure 11. 

 
 Point estimation, as the term suggests, is the estimation of a measurable quantity at a point 
where it has not been measured, and it arises often in interpreting map information.  Suppose, for 
example, that you have water-quality data at many wells scattered across a geographic area.  
What can you say about the water quality at specific locations where you do not have any wells? 
One statistical way is to use the weighted average of data from three nearby wells (i.e., Equation 
17 here, or Equation 11.6 of Applied Geostatistics).  This technique is called triangulation in 



geostatistics for the obvious reason that it uses three data points; there are other techniques that 
take account of more than three points and use other weighting schemes 
 The weighted averaging of triangulation in geostatistics is linear interpolation on a plane.  As 
we have shown, it is a variation of the theme of solving the three-point problem familiar from 
structural geology and hydraulic gradients. 
 When you hand contour well data by figuring how contours cross the lines between a pair of 
wells by dividing the line into proportionate parts, you are applying a two-point version of the 
same equations used in geostatistical triangulation.  This is the familiar linear interpolation on a 
line from school algebra.   
 Contouring is a form of geostatistical point estimation.  In its simplest form, it is akin to the 
familiar three-point problem. 
 
Binary and Ternary Mixtures 
 Principles and Applications of Geochemistry by G. Faure (2nd edition, Prentice Hall, 1998, 
600 pp) is the textbook of choice for many courses in general geochemistry.  Chapter 18, 
"Mixing and Dilution," gives a useful account of mixtures of two and three end-members (binary 
and ternary mixtures, respectively).  Much of the chapter discusses interpretation of XY-
scatterplots, where the random variables X and Y are concentrations of chemical constituents in a 
collection of, say, water samples (or, in the language of sampling, a sample consisting of 
individuals – individual specimens – where each specimen is represented by a data point).  If the 
sample is drawn from a population formed by binary or ternary mixing, how does the sample 
appear on the scatterplot? 
 A sample from a binary mixture scatters along a straight line on an XY-plot, if the two 
chemical species are conservative, meaning that they do not react with each other or with the 
environment as a result of the mixing. The straight line is called a mixing line, an important term 
in the language of geochemistry.  A generic example is shown in Figure 13.  In the example 
discussed by Faure, the sample is taken from a channel where water from one lake mingles with 
water from another. In Faure's example, X is concentration of Sr in μg/L, Y is concentration of 
Ca in mg/L, and P1 and P2 are waters of the two lakes (Lake Superior and Lake Huron, 
respectively).  Addition of small amounts of a third component (such as dilution by rainwater) 
and seasonal variation in the end-members contribute to scatter around the mixing line.  
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Figure 13.  A mixing line connecting P1 and P2.  
Mixtures range from f  = 1 for a mixture consisting 
100% of P1 to f = 0 for a mixture consisting of 0% of 
P1. 

 



 The numbers on Figure 13 indicate the value of f, the fraction of P1 that is in the mixture.  
The values of X and Y along the mixing line are clearly the weighted average of the X- and Y-
values in P1 and P2, where the relative weights are f and 1-f, respectively.  In other words, the 
variation of X and Y is described by Equation 12, which is the same, except for notation, as 
Equation 18.2 of Faure's book.  To calculate the fraction of the mixture that is derived from P1, 
one can use the first of Equations 11, which is the same except for notation as Equation 18.6 of 
Faure's book.   
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Figure 14.  A mixing triangle connecting P1, P2 and P3.  
Mixtures ranging from M1 to M2 along the mixing line 
connecting P1 and P3 are diluted with P2.  The percentage of 
any end-member in the ternary mixture can be calculated 
from the area of appropriate triangles and a spreadsheet like 
that of Figure 12. 

 
 In the same way that a sample from a binary mixture is scattered along a mixing line, a 
sample from a ternary mixture is scattered within a mixing triangle.  Mixing of three components 
can occur, for example, as a result of a sequence of two mixing processes.  One case discussed 
by Faure is a solution formed, first, by mixing of two subsurface brines and, then, dilution of that 
binary mixture with meteoric water.   
 A generic example is shown in Figure 14. P1 and P3 are the high-concentration brines, which 
form a mixture ranging from M1 and M2 on a mixing line. P2 is meteoric water, which is low 
enough in dissolved constituents that it plots at the origin.  Dilution of the P1P3 brine mixture 
results in an infinite set of mixing lines extending from the M1-M2 line segment to P3.  The data 
points from the ternary mixture plot along those mixing (or dilution) lines.  The example 
discussed by Faure is from a study of oilfield brines.  X is Sr in 102 mg/kg and Y is Na in 104 
m/kg. 
 The values of X and Y within the mixing triangle are the weighted average of the X- and Y-
values in P1, P2 and P3.  The weighted average is described by an equation like Equation 17, in 
which the weights are the fraction of the end-member in the mixture.  For any particular mixture, 
such as P (the sample average) in Figure 14, the fraction of the various end-members in the 
mixture can be found from the ratios in Equations 40-42.  For example, the fraction of P1 in P is 
the ratio of the area of triangle P2PP3 to the area of triangle P2P1P3 and can be found from 



Equation 40.  Similarly, the fraction of M1 in P, within a M1-M2-P2 mixture, is the ratio of the 
area of triangle P2PM2 to the area of triangle P2M1M2 and can also be found from Equation 40. 
 As an exercise in geometry, you might like to convince yourself that the fraction of the blend 
that comes from the meteoric-water end-member is the same regardless of which mixing triangle 
you use.  That is, show that  
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Concluding Remarks 

There is much discussion in science education now about interdisciplinary, or integrative, 
science.  Courses are being developed that cross disciplinary boundaries.  As the language and 
problem solver of science, mathematics crosses disciplinary boundaries.   
 A single mathematical problem can arise in many different contexts and can produce an array 
of different problems.  They may have different languages reflecting the various specialized 
settings.  But they are all simply variations on a single theme.  For example, within the single 
field of geology, variations of the three-point problem include finding the strike and dip of an 
inclined surface, finding the hydraulic gradient from well data, estimating the value of a 
measured quantity at a location where it has not been measured, and interpreting geochemical 
data sampled from ternary mixtures.  Whether the problem is attacked graphically, from the 
equation of a plane, by means of a weighted average and vector products, or as a case of three-
dimensional linear interpolation – the problem is still basically the same mathematically.   
 Any effort to break down the disciplinary boundaries of science in education would be 
greatly enhanced by developing – as opposed to avoiding – mathematics.  The same is true, of 
course, for breaking down subdisciplinary boundaries within geoscience education. 
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Appendix:  Manipulating Equations 
 
 The second edition of the superb little book Mathematics, A Simple Tool for Geologists by 
David Waltham (2nd edition, Blackwell Science, Oxford, 2000, 201pp) is now available.  Chapter 
3, "Equations and How to Manipulate Them," reviews the basic rules of school algebra.   
 Deriving Equation 8 from Equation 7 provides a good illustration of the rules of Sections 3.2 
and 3.3, "Combining and simplifying equations," and "Manipulating expressions containing 
brackets," respectively. 
 Thus, starting with Equation 7,  
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multiply out the (y2-y1) factor, 
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Then factor out y1, 
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and substitute for the 1 in the first set of parentheses, 
 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
−
−

=
12

13
2

12

13

12

12
13 xx

xx
y

xx
xx

xx
xxyy . 

 
Finally, combine the terms in the first set of parentheses to get 
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which is Equation 8. 
 The algebra between Equations 7 and 8 is the kind of material that is invariably left out of 
specialized geology textbooks.  To include it would make the textbooks simply too long.  Many 
beginning graduate students encountering mathematics-intensive geology courses for the first 
time, however, find themselves unable to recreate the missing steps when they work through 
these books. Such students would be well served to have Mathematics, A Simple Tool in their 
personal library and to work through it for review. 


