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Introduction 
 The definition of a mathematical function will be familiar to any student who has 
taken college mathematics.  A mathematical function is a rule that assigns to every 
element x of a set X (the domain) a unique element y of the set Y (the range).  Earlier 
Computational Geology columns have discussed two important examples in some detail: 
the power function in CG-8 (November, 1999), and the exponential function in CG-9 
(January, 2000). For both of these functions, the domain and range consist of numbers, 
and the rule that maps the domain onto the range is an algebraic formula. 

The last column, "The Algebra of Deduction" (CG-10, March, 2000), featured a 
different kind of function – the kind that is used in propositional logic.  The truth-
functions of propositional logic have a domain and a range consisting of truth-values (T 
or F).  For these functions, the rule that maps the domain onto the range is best 
communicated by means of a truth table. 

The subject of this essay is the conditional, one of the five truth-functions of CG-
10.  The conditional lies at the heart of deductive reasoning.  Whenever geologists reason 
deductively, make logical argument, or engage in modeling – whether mathematical or 
otherwise – they use the conditional.  In the same way that geologists must understand 
the exponential and power functions in order to apply mathematics to geology, they must 
also understand the conditional in order to apply logic to geology. 
 
About the conditional 
 The essential features of the conditional, p→q ("if p, then q"), were covered in 
CG-5 ("If Geology, then Calculus", March, 1999) and CG-10.  By way of review:  
 

1.  The conditional is a compound proposition defined (Table 1) such that it is 
false (i.e., has the truth-value F) only when the antecedent (the p-proposition) 
is true and the consequent (the q-proposition) is false.  The conditional is true 
when both p and q are true.  It also is true when p is false, no matter whether q 
is true or false.  

 
2. Although "if p, then q" is the usual way that the conditional is translated into 

words, there are other common translations.  These include: "p only if q", "p is 
a sufficient condition of q", "q is a necessary condition of p", and "p implies 
q". 

 



p q p→q 
T T T 
T F F 
F T T 
F F T 

 
  Table 1.  Truth table defining the conditional. 

 
3. The conditional is logically equivalent to three other compound propositions: 

a. ~(p∧~q), which says that it is impossible to have p and not have q also. 
b. ~p∨q, which says that one either does not have p or does have q. 
c. ~q → ~p, which says that if one does not have q, then one does not have p 

either. ~q → ~p is the contrapositive of p→q. 
 

4. Most emphatically, the conditional is not equivalent to its converse.  In other 
words, one cannot jump with impunity from p→q (the conditional) to q→p 
(the converse of p→q). 

 
This last item, that one cannot presume to reverse the direction of the arrow, is the theme 
of this essay. 
 
 Four classic arguments 
 Table 2 lists the structure of four classic arguments involving the conditional.   In 
each case, the if-then statement is the lead premise.  The second premise then either 
affirms or denies either the antecedent or consequent in the lead premise. 
 

 Affirming the 
antecedent 

Denying the 
antecedent 

Affirming the 
consequent 

Denying the  
consequent 

Premise 1 p→q p→q p→q p→q 
Premise 2 p ~p q ~q 
 ----------- ----------- ----------- ----------- 
Conclusion q ~q p ~p 
     

 Table 2.  Classic syllogisms using the conditional as the main premise. 
 
 To see how these arguments work, we can take the substitution instance of: 
  p = "this specimen is quartz". 
  q = "this specimen will scratch glass". 
 
Then the four arguments become: 
 
 Affirming the antecedent -- 

• If this specimen is quartz, it will scratch glass. 
• This specimen is quartz. 
-------------------- 
∴ This specimen will scratch glass. 



 
Denying the antecedent -- 

• If this specimen is quartz, it will scratch glass. 
• This specimen is not quartz.  
-------------------- 
∴This specimen will not scratch glass. 
 

Affirming the consequent -- 
• If this specimen is quartz, it will scratch glass. 
• The specimen does scratch glass. 
-------------------- 
∴The specimen is quartz. 
 

Denying the consequent -- 
• If this specimen is quartz, it will scratch glass. 
• The specimen does not scratch glass. 
-------------------- 
∴The specimen is not quartz. 

 
The first and fourth arguments are valid.  (Recall that in a valid argument the truth 

of the premises guarantees the truth of the conclusion; see CG-5 and CG-10).  Their 
validity can be established easily by use of truth tables, and we did so in CG-10.  
Affirming the antecedent and denying the consequent are well-known laws of logic.  
They are so important to logic that they have Latin names -- modus ponens and modus 
tollens, respectively -- dating from the Middle Ages when deductive logic was the 
principal means of discovery by scholars.  

The second and third arguments are not valid.  This too can be easily shown by 
truth tables (and was, for affirming the consequent in CG-10).  The arguments can also be 
shown to be invalid by counter-example.  For example, suppose "the specimen" is in fact 
corundum.  Then the two arguments become:    
 

For denying the antecedent -- 
• If this specimen is quartz, it will scratch glass. 
• This specimen is corundum, not quartz. 
-------------------- 
∴This specimen (corundum) will not scratch glass. 
 

Affirming the consequent -- 
• If this specimen is quartz, it will scratch glass. 
• This specimen (corundum) scratches glass. 
-------------------- 
∴This specimen (corundum) is quartz. 

 
Clearly, the conclusion of each of these arguments is false.  For the cases where "the 
specimen" is a glass-scratching non-quartz mineral, arguing by denying the antecedent or 
affirming the consequent produces a false conclusion from true premises for this 



substitution instance of p and q.  (Note, the fact that "this specimen" is corundum rather 
than quartz does not affect the truth of the first premise.  The statement "IF the specimen 
is quartz, it will scratch glass" is true regardless of what "the specimen" refers to.) 
 Meanwhile, what if "this specimen" in the denying-the-antecedent argument is 
calcite rather than either quartz or corundum?  Then, the argument becomes: 
 

• If this specimen is quartz, it will scratch glass. 
• This specimen (calcite) is not quartz. 
-------------------- 
∴Therefore this specimen (calcite) will not scratch glass. 

 
The argument has two true premises and a true conclusion.  
 Similarly, what if "this specimen" in the affirming-the-consequent argument 
really is quartz?  Then, the argument becomes  
 

• If this specimen is quartz, it will scratch glass. 
• This specimen (which is quartz) scratches glass. 
-------------------- 
∴Therefore, this specimen (quartz) is quartz. 

 
Again, the argument has two true premises and a true conclusion. 
 The fact that these last two examples have true premises and a true conclusion 
does not change the fact that the arguments themselves are invalid.  They merely 
illustrate that invalid arguments produce true conclusions from true premises sometimes, 
and false conclusions from true premises sometimes.  One cannot count on an invalid 
argument to produce a true conclusion from true premises.  Only with a valid argument is 
there a guarantee that the conclusion will be true if the premises are true. 
 Denying the antecedent and affirming the consequent are well-known logical 
fallacies.   
 
Uniformitarianism, Part 1 
 Uniformitarianism is a methodological assumption (Peters, 1997) which asserts 
that knowledge of present-day processes informs interpretation of features that formed in 
the past.  Thus, if streams cut V-shaped valleys today, then streams cut V-shaped valleys 
in the geological past.  If glaciers today deposit a very poorly sorted sediment consisting 
of large clasts dispersed in a matrix of finer material, then past glaciers did the same.  If 
the point bars of migrating meanders produce fining-upward packages of alluvial 
sediment today, then the same was true in the past.  In this way, "the Present is the key to 
the Past", in the words of Sir Alexander Geikie about a hundred years ago.  [Until 
relatively recently, the claim of Uniformitarianism was more than a methodological one – 
see Peters, 1997, for a recent discussion.] 
 The point of this assumption (Uniformitarianism) is that it provides geologists a 
way to reason from cause (i.e., stream erosion, glacial deposition, point-bar progradation) 
to effect (V-shaped valleys, "boulder clay", and fining-upward alluvial sequences, 
respectively) in order to interpret the past.  The cause-and-effect propositions are 



commonly couched in terms of process-response models.  In the context of propositional 
logic, they are conditionals: 
 

• Erosion by streams → V-shaped valleys. 
• Deposition by glaciers → Megaclasts dispersed in fine matrix. 
• Deposition by meandering streams → Fining-upward sequences. 
 

Uniformitarianism specifically says that these process-response models, if they can be 
demonstrated to operate now, also operated in the past. 

But how do (must) geologists use the process-response couples?  They infer 
(interpret) the cause (process), which acted in the past, when all that the geologists can 
see is the remains of the effect (response).  For example, a complete argument is: 

 
• Erosion by streams → V-shaped valleys. 
• Abandoned V-shaped valley (observation). 
-------------------- 
∴A stream was formerly present (interpretation). 

 
The argument is clearly by affirming the consequent.  The argument, therefore, is a 
logical fallacy. 

The hazards of this type of argument can easily be seen by the history of 
interpretation of "sedimentary layers containing large clasts (pebbles, cobbles, boulders 
and blocks), mixed or dispersed in a matrix of finer material".  The quotation is from 
John Crowell (1964, p. 86), whose paper "The origin of pebbly mudstones" (Crowell, 
1957) ushered in an outpouring of caution and/or doubt about the interpretation of pre-
Pleistocene, and particularly Precambrian, tillites (e.g., Dott, 1961; Schermerhorn, 1974).  
The problem, of course, was that deposits with megaclasts (a word coined by Crowell) 
dispersed in a fine matrix could form in more than one way.  In terms of logic, the 
argument 

 
• Deposition by glaciers  → Megaclasts dispersed in fine matrix. 
• Megaclasts dispersed in fine matrix (observation). 
-------------------- 
∴Glaciers were here (interpretation). 

 
 fails.  The reason it fails is that other antecedents are possible for the consequent, 
"megaclasts dispersed in fine matrix."  The situation is shown in Figure 1.  As argued by 
Crowell (1957, 1964) and others, these deposits can be formed by a variety of downslope 
movements in which coarse clasts are mixed in with fine material.  Classic Precambrian 
tillites continue to be reinterpreted as debris flows (Jensen and Wulff-Pedersen, 1996), 
even as theories of Precambrian glaciation mature (e.g., Young, 1988).   
 The problem, of course, was exacerbated by the ready use of tillite, with its 
genetic meaning, for the observation,"this rock is an unsorted mix of large clasts and fine 
material".  That particular aspect of the problem was solved by the invention of the word 
diamictite (Flint and others, 1960 a, b), which has no genetic content.  (See Harland and 
others, 1966, for the interesting saga of till, tillite, drift, "boulder clay", and others).  The 



problems of using rock names with genetic (or process) connotation are well known to 
geologists.  The point can be made that many of these problems reflect how easily one 
falls into the trap of affirming the consequent.   
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   Figure 1.  Two causes for pebbly mudstones.  
 
 And to show for the sake of a later point that one never knows when the story 
might end: the proposed processes giving rise to diamictites have taken a jump in kind 
beyond the realm of possibilities noted by Crowell, Dott and others.  Now some 
geologists are asking, "Are diamictites impact ejecta?" (Reimold and others, 1997) 
(Oberbeck and others., 1993a, b; Young, 1993; Rampino, 1994).  So, Figure 2 might be 
appropriate.  
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   Figure 2.  Three causes for pebbly mudstones.  
 
 
Inverse functions 
 Mathematicians looking at Figures 1 and 2 would immediately be reminded of the 
definition of a function.  The standard definition I gave in the second sentence of this 
essay is identical to the first part of the definition in a popular mathematical dictionary 
(Daintith and Nelson, 1989, p. 138): 



 
function (map, mapping)  A rule that assigns to every element x of a set X a 
unique element y of a set Y,  written y = f(x) where f denotes the function.  X is 
called the domain and Y the range (or codomain).  For example, the area of a 
circle, y, is a function of the radius, x, written y = f(x) = πx2. x is called the 
independent variable or argument, and y is called the dependent variable or the 
image of x.  If a function can be expressed algebraically the value of y can be 
calculated for any particular value of x.  For example, a circle of radius 2 has area 
f(2) = 4π.  However some functions cannot be expressed algebraically; for 
example the function "is the birthday of", which has domain the set of all 
individuals and range the set of all days in a year.  

 
In Figures 1 and 2, the domain X is shown by the circular shaded area and is the set of all 
agents (processes) resulting in sedimentary deposits.  The range Y is shown by the 
elliptical shaded area and is the set of all the kinds of sedimentary deposits.  One 
particular element (y*) in Y is of interest – the sedimentary deposits consisting of 
megaclasts dispersed in a fine matrix.  The function of Figure 1 maps two elements in X 
(i.e., x1 = glaciers and x2 = mass wasting) to y*, and the function of Figure 2 maps those 
two and one more (x3 = impacts) to y*.   
 It is not unusual for a function represented by a formula to map more than one x 
to a single value of y.  For example, you certainly know the function: 
 
   ,       (1) 2)( xxfy ==
 
in which the two arguments x1 = 1 and x2 = –1 have the same image, y* = 1; the example 
is like that shown in Figure 1.  You also know the function 
 
  ,       (2) )tan()( xxfy ==
 
in which an infinite number of arguments (x1 = 0, x2 = 180º, x3 = –180º, x4 = 360º, x5 = –
360º and so on) are all mapped onto the one value of y* = 0.  That situation, of course, is 
much more complicated than the one shown in Figure 2. 
 You will not, however, see a function that maps one x to more than one y.  That 
situation is specifically disallowed. The word unique in the first sentence in the definition 
forbids it.  (And there lies one approach to the issue discussed in this essay: forbid it from 
happening.)   
 But what, you say, if one wants to reverse the arrows and go from the elements of 
Y to the set X?  For example, what if one wants the functions that solve equation (1) or (2) 
for x in terms of y?  The answer is that one specifically restricts the domain of the original 
function (i.e., the set X) (e.g., Courant and Robbins, 1941, p. 281).  For equation (1), the 
function that does the job is  
 
  yx = ,        (3) 
 
where the symbol √y is defined to mean the positive number whose square is y (y is also 
limited to positive values).  For equation (2), the function that reverses the flow is 



 
    ,       (4) )arctan( yx =
 
where, for the purpose of equation (4), the tangent function of equation (2) is limited to 
values of x in the interval –180 < x < 180º.  So, the function of equation (4) is defined for 
all y from –∞ to +∞. 
 These functions that reverse the flow and switch the domain and range are called 
inverse functions.  The dictionary definition is (Daintith and Nelson, 1989, p. 181): 
 

inverse (of a function)  A function that assigns to every element y of Y a unique 
element x = g(y) of a set X, where X is the domain of the given (single-valued) 
function f and Y is the range of the function.  y = f(x) is equivalent to x = g(y) and 
g is said to be the inverse of f , written f-1.  Also f(f-1(y)) = y for all y in Y and f-

1(f(x)) = x for all x in X, the domain of f being the range of g and vice versa.  If f 
is continuous, monotonic, and defined on a real interval [a,b] then a continuous 
monotonic inverse f-1 exists.  For instance, 
 
  32)( +== xyxf
 
where 0 ≤ x ≤ 1, has inverse 
 

 )3(
2
1)(1 −==− yxyf  

 
where 3 ≤ y ≤ 5.  The variables x and y are often interchanged in the inverse 
function, so that in this instance  
 
  32)( +== xyxf
 
is said to have inverse 
 

 )3(
2
1)(1 −==− xyxf . 

 
Note the term single-valued in the first sentence.  That is the restriction that makes the 
reversal of the arrows possible.  Without that restriction, a unique inverse function would 
not exist.  The functions of Figures 1 and 2 are not single-valued. 
 The word monotonic in the quotation is another key word.  This is the condition 
that prevents a function from reversing its vertical direction on a graph and therefore 
repeating a value of y.  As in so many fundamental concepts, the classic What is 
Mathematics? makes it clear (Courant and Robbins, 1941, p. 280): 
 

The existence of a unique inverse of a function of one variable, u=f(x) can be 
seen by a glance at the graph of the function.  The inverse function will be 
uniquely defined only if to each value of u there corresponds but one value of x.  
In terms of the graph, this means that no parallel to the x-axis intersects the graph 
in more than one point.  This will certainly be the case if the function u = f(x) is 



monotone, i.e., steadily increasing or steadily decreasing as x increases.  For 
example, if u = f(x) is steadily increasing, then for x1 < x2 we always have u1 = 
f(x1) < u2 = f(x2)  and the inverse function will be uniquely defined.   

 
 
The Inverse Problem 
 Inverse Problems, Activities for Undergraduates by Charles W. Groetsch (1999) 
is one of the new books from the Mathematical Association of America (MAA).  The 
book is "meant to enrich, and perhaps enliven, the teaching of mathematics in the first 
two undergraduate years" (p. v).  Dr. Groetsch is a professor of mathematics at the 
University of Cincinnati and a past recipient of the MAA's George Pólya Award.   
 [Readers of this column may recall Pólya from CG-6 (May 1999) on solving 
geological-mathematical problems. Pólya, renowned for his seminal little book, How to 
Solve It, was a well-known mathematician as well as ground-breaking mathematics 
educator.  Announcing its just published The Random Walks of George Pólya 
(Alexanderson, 2000), the MAA in its March 2000 newsletter says of Pólya: "In addition 
to his championing problem-solving, he contributed to mathematics important results in 
complex and real analysis, inequalities, mathematical physics, combinatorics, probability 
theory, number theory, and geometry.  He coined the phrases 'random walk' and 'central 
limit theorem' and…."] 
 The first chapter of Inverse Problems uses ten examples to communicate what 
inverse problems are all about.  These ten stories, which contain no equations 
whatsoever, include appearances by people whose names will be familiar to earth science 
students: Archimedes, Erastothenes, Galileo, Copernicus, Newton, Halley, Herschel, 
Hubble, Airy, Bouguer, Mason and Dixon, Kelvin, Urey, Joly (age of seawater), 
Cavendish (mass of the Earth), Oldham (Earth's core) and even Henri Darcy!  His first 
example, though, has to be the very best from all of history.  It is Plato's famous Allegory 
of the Cave, which has energized countless philosophical discussions of the connection 
between sense-experience and reality. 
 The example starts with the following quotation from Plato's Republic (Book VII) 
(Groetsch, 1999, p. 4): 
 

Behold! human beings living in an underground den; here they have been from 
their childhood, and have their legs and necks chained so that they cannot move, 
and can see only before them, being prevented by the chains from turning round 
their heads.  Above and behind them a fire is blazing at a distance, and between 
the fire and the prisoners there is a raised way; and you will see, if you look, a 
low wall built along the way, like the screen which marionette players have in 
front of them, over which they show their puppets.   
 

Then there is this explanation of direct and inverse problems (Groetsch, 1999, p. 4-5): 
 

In Plato's story, the captives are faced with reconstructing the real world outside 
of the cave on the basis of very limited information – observations of shadows 
projected on the back of the cave.  That is, they seek the cause (real objects) of 
the effects (projected shadows) of the distant fire (model).  The direct problem is 
completely understood: given an object on the wall, it is a routine matter, 
knowing the process by which the fire casts the shadow of an object, to 



completely specify the unique shadow that a given object casts.  On the other 
hand, the inverse problem of determining an object from its shadow does not 
have a unique solution.  For example, a square image cast on the back of the cave 
may correspond to a cube or a right circular cylinder with equal height and 
diameter, or in fact infinitely many other three-dimensional objects.  
Furthermore, shadows that are very nearly the same may correspond to three-
dimensional objects the difference of whose volumes is arbitrarily large, that is, 
the inverse problem is in a certain sense unstable.  In the problem of the cave, the 
model, that is, the projecting property of the fire, destroys information 
irrevocably -- an entire spatial dimension is suppressed.  In mathematical terms, 
we would say that the operator has a nontrivial null-space and hence that the data 
for the inverse problems, that is, the shadows, lack essential information 
necessary to uniquely reconstruct the object….. (t)his is a common feature of 
many inverse problems.   
 

 Before getting to the ten stories, Groetsch distinguished two types of inverse 
problem for every direct problem (Figure 3).  The direct problem is: Given x and an  
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Figure 3.  The direct problem (A) and its two inverse 
problems: the causation problem (B) and the model-
identification problem (C).  Adapted from Groetsch 
(1999, p. 2-3) 

 
operator K, find Kx.  According to Groetsch (1999, p. 2): 

 
The greater part of undergraduate training in mathematics is dominated by direct 
problems, that is, problems that we can characterize as those in which exactly 
enough information is provided to the student to carry out a well-defined stable 
process leading to a unique solution.  Typically a process is described in detail, 
and an appropriate input is supplied to the student, who is then expected to find 
the unique output.  In the sciences, the process is usually called a model, with the 
input labeled the cause and the output the effect.  



 
The first type of inverse problem (Fig. 3B) is the causation problem.  Given the 

output and the model, what was the input?  [In my experience, this is what modelers have 
in mind when they use the term inverse problem.].  The second type of inverse problem 
(Fig. 3C) is the model identification problem.  Given cause and effect information, 
identify the model. 

 
 Now here's the point (Groetsch, 1999, p.3):  
 

If the process K is truly an operator, that is, a function, then for any given input in 
its domain, a unique output is determined.  That is, the direct problem has a 
unique solution.  On the other hand, there is no guarantee that the inverse 
causation and model identification problems have unique solutions….  
 

 Elementary examples can be provided by arithmetic.  A direct problem is 
obtaining the number 12 (output) from the numbers 3 and 4 (input) by multiplication 
(process or model).  The causation variety of inverse problem is: Given the number 12 
and the process of multiplying two numbers together, what are the two numbers?  Clearly 
the answer is not unique (3 and 4, vs. 6 and 2).  The model identification problem is: 
Given the numbers 3 and 4, and the number 12, how does one get from the 3 and 4 to the 
12?  Clearly that answer is not unique either.  For example, the model could be: find the 
value of 3 raised to the power of 4, subtract the value of the 4 raised to the power of 3, 
subtract the 3 and finally subtract the square root of the 4.  [Of course, Occam's Razor 
could be brought in, but that would involve an assumption; again see Peters, 1997, on the 
matter of methodological assumptions.] 
  
Uniformitarianism, Part 2 
 The fundamental feature of Figure 3 is the flow of the arrow: from left to right.  
The process or model goes from input to output, from cause to effect.  The same is 
fundamentally true of the conditional in logic: the flow is from antecedent to consequent. 
Similarly, when we apply uniformitariansim it is with the knowledge that, in the present, 
a given cause produces a given effect.  We know the K of Figure 3 from study of the 
present-day depositional environments, for example.  The problem is: Given a feature y 
as seen in the rocks or the landscape, what is the x?  In Groetsch's terminology, this is the 
causation version of the inverse problem. 
 To find x from y, one needs to reverse K; that is, one must find K-1.  More 
importantly, one must inquire whether a K-1 exists (meaning does it meet the definition of 
function by producing only a single x for a given y?).  As stated in the earlier definition 
and in the quotation from What is Mathematics?, the inverse function will exist if the 
original (direct) function is monotonic.  The key here is that monotonic functions produce 
a one-to-one pairing of elements of the domain with elements of the range (Fig. 4).  The  
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   Figure 4.  A one-to-one mapping. 
 
answer to the question of K-1 hinges on whether or not there is one-to-one pairing of 
causes and effects. 
 In logic, the K-1 is the converse, and one can no more assume that the converse of 
a conditional is true than, in mathematics, one can assume that an inverse function exists.  
However, if one can establish a one-to-one pairing across the conditional, then the 
converse would be true. In such a case, the appropriate connector of the antecedent and 
consequent would not be the conditional (→) but rather the biconditional (↔).  With the 
biconditional, the fallacies of affirming the consequent and denying the antecedent fall 
away.  That is, the following two arguments are valid:  
 

• p ↔ q 
• q 
-------------------- 
∴  p 
 
• p ↔ q 
• ~p 
-------------------- 
∴   ~q 

 
 The story of diamictite illustrates, I believe, a human tendency to leap from 
conditionals to biconditionals.  In other words, the reason that the fallacies of affirming 
the consequent and denying the antecedent are so common is that when one sees the 
conditional, one tends to think in terms of the biconditional.  For example, when a 
geologist observes present-day glaciers depositing megaclasts amongst a fine matrix (K 
in the direct mode, or the conditional), one tends to walk away with a feeling of 
enlightenment: "Hey, I know how pebbly mudstones are formed."  To be more precise, 
the enlightenment, although not explicitly stated, tends to be: "Hey, I know the one way 
that pebbly mudstones are formed" (which, of course, is quite understandable if it is the 
first time that pebbly mudstones have been seen to be forming by any process).   This 
statement, then, establishes in the mind a one-to-one pairing of glacial deposition and the 
occurrence of pebbly mudstones.  With such a paring, concluding that glaciers were 
formerly present when one sees pebbly mudstones is logically valid.  Unfortunately, as 



evidence accumulates (of mass wasting and possibly impacts), the biconditional is 
refuted. There is not a one-to-one pairing.  
   How does one know that a particular consequent is paired with only one 
antecedent?  At the risk of seeming flippant, I have to say one has to live forever.  One 
has to investigate all the possible antecedents (causes) and see if any of them also 
produces the consequent.  Mathematicians call such an enterprise proof by complete 
enumeration.  
 Induction is the method of reasoning from arguments that hinge on complete 
enumeration.  In induction, one leaps beyond the premises; the truth of the premises 
cannot guarantee the truth of the conclusion (because that last observation that might 
change everything has not been made).  Induction, therefore, is fundamentally different 
from deduction.  In, deduction, if it is done correctly (i.e., if the arguments are valid), one 
can be assured that the conclusions are true, if the premises are true.  The down side, of 
course, is that deduction merely reveals what is contained in the premises.  In order to get 
anywhere, one must take a chance and leap beyond the premises. 
  To conclude this section, where do these considerations leave us?  Observing 
geologic processes in the present gives geologists conditionals, which flow, in direct 
mode, from antecedents to consequents.  Uniformitarian application of these conditionals 
to interpret past antecedents from the observed remains of presumed consequents 
amounts to reasoning by affirming the consequent, which is logically fallacious.  The 
fallacies can be avoided if we can establish one-to-one pairings of causes and effects 
across the conditional.  Unfortunately this requires induction.  The conclusion that we 
have found a one-to-one pairing can only be uncertain. 

[Note on induction.  This is induction in the following sense. The reasoning is: we 
have looked at A1, A2, A3, … An, and there is only x1 for this y; therefore, x2 will not be 
found.  The reasoning is inductive because it represents a leap from the sample {A1, …, 
An} to the population {A1, …, A∞}, the set of all possible causes that have been and ever 
could be thought of.  This is a different kind of induction than that of the discredited 
"inductionist" school discussed in the context of critical rationalism and geomorphology 
by Haines-Young and Pech, 1980.  This inductive process of leaping to the conclusion 
that no x2 will be found is not incompatible with critical rationalism.] 
 
Equifinality 
 There is a term in the geomorphology literature for the notion that different causes 
may result in a single effect.  The term is equifinality, which in its original usage in 
general system theory is the name given to "the fact that the same final state can be 
reached from different initial conditions and in different ways" (von Bertalanffy, 1951, p. 
160).  The term was introduced into geomorphology literature with the influential paper 
by Chorley (1962) on the application of general systems theory to geomorphology 
(Haines-Young and Petch, 1983).  One of the basic considerations of general systems 
theory is the distinction between open and closed systems.  Equifinality is one of the 
features of steady state in an open system.  Thus, "Steady state systems show equifinality, 
in sharp contrast to closed systems in equilibrium where the final state depends on the 
components given at the beginning of the process" (van Bertalanffy, 1951, p. 158). 
 Haines-Young and Petch (1983) challenged the notion of equifinality in 
geomorphology, at least insofar as the concept means "accepting that similar landforms 



may result in different ways from diverse origins"(p. 459).  They said that application of 
the notion to particular instances could be wrong in either of two ways: 
 

• The understanding of the process (cause) may be deficient.  There may be a 
single more fundamental cause underlying the two (or more) causes that are 
taken to produce a single effect.  As an example, Haines-Young and Petch 
(1983) took arroyos.  The recognition that arroyos can form as a result of 
either changing rainfall intensity or changing vegetational character gives the 
impression of equifinality.  But, they submit, the two "causes" are simply 
manifestations of a more fundamental statement such as "any factor which 
increases erosiveness of flow through valley bottoms leads to arroyo 
formation."  Increased erosiveness, then, is the single cause paired with 
arroyos.   

 
• The similarity between landforms produced in different ways may be more 

apparent than real.  As an example, Haines-Young and Petch (1983) took 
drumlins.  Apparently there are drumlins and drumlins, and the variations in 
their characteristics such as size, elongation or spacing reflect their mode of 
genesis.  Thus the word drumlin is too broad when it is "used with some lack 
of precision to refer to small rounded or elongated hills, usually but not 
exclusively, formed of till" (Haines-Young and Petch, 1983, p. 461).  The 
broadness of the word obscures differences that enable a one-to-one pairing 
with different causes. 

 
 Moreover, there is some danger in the notion of equifinality (Haines-Young and 
Petch, 1983, p. 462): 

 
While it is logically possible that similar forms can be produced by 
fundamentally different causes, too rapid acceptance of equifinality as a 
description of a given set of landforms may inhibit the discovery of general laws 
or detailed differences of forms by which cause and effect may be more closely 
associated.  It is suggested, therefore, that equifinality is accepted as a matter of 
last rather than first resort, and is only seriously entertained when these other 
possibilities are rejected through critical examination.  

 
 Haines-Young and Petch (1983) made the further point that progress in 
geomorphological research requires two assumptions: (1) that processes produce effects 
that can, in fact, be seen in the geomorphological record (preservability), and (2) that 
these effects are different for different processes (anti-equifinality).  Without these two 
assumptions, one cannot achieve the goals of geomorphology (Haines-Young and Petch, 
1983, p. 464-465]: 
 

Thus, in exploring questions of origin, and in seeking to explain the development 
of landscape features, we must (their emphasis) assume that landforms do contain 
evidence of how they were formed or how they behave.  We must assume that on 
the basis of effects we can eventually distinguish causes, and that in the end a 
genetic classification of features is possible. … One is forced to accept (these 



assumptions about evidence) since the alternative is to assume that landforms do 
not contain such evidence, in which case it would not be possible to pursue an 
empirical, scientific geomorphology.  

 
Uniformitarianism, Part 3 
 The hypothetical-deductive method involves generating hypotheses, taking them 
as antecedents of conditionals, and confirming or disconfirming the consequents in those 
conditionals by observation.  In order to proceed fairly, the hypotheses must be 
falsifiable.  If the consequent deduced from the hypothesis is disconfirmed, the 
hypothesis is rejected (modus tollens), modified, or conjoined with auxiliary hypotheses 
(qualifiers).  The consequents of this strengthened hypothesis are further tested.  Only the 
strongest hypotheses survive.  The process goes on forever (or longer).  This is critical 
rationalism (e.g., Popper, 1963; Medawar, 1969) (Haines-Young and Petch, 1980).   
 But where do the hypotheses come from?  A wide range of answers has been 
given. Known sources of hypotheses include analogies, bright ideas, even dreams.  Often 
the sources fall under the category of "intuition" (e.g., Medawar, 1969).  Much geologic 
intuition, I believe, is propelled by uniformitarianism.  It provides a source of hypotheses.  

It is one thing to say that uniformitarianism is a methodological assumption in 
that we have to assume that cause-and-effect couples are uniform through time in order to 
get our job done.  But how do we get the job done?  It is by assuming, further, that one 
can find unique pairings of causes and effects (i.e., the assumptions of Haines-Young and 
Pech, 1983).  In applying uniformitarianism, we make the inductive leap and hypothesize 
that we have, in fact, found such pairings.  This background hypothesis leads us to 
replace the conditional with a biconditional and "conclude" that the antecedent in the 
former conditional is the cause of the effect.  This "conclusion" then becomes our main 
hypothesis, a conjecture (in the sense of Popper) that may be refuted in subsequent 
studies. The steps leading to our adoption of that main hypothesis (i.e., reversing the flow 
of the conditional, or "solving" the inverse problem) are part of our geological intuition.  
They are a set of assumptions and hypotheses operating in the background.  

In practice, uniformitarianism inspires a leap beyond the limitations of deduction.  
This inductive leap introduces uncertainty.  It also produces ever more for geologists to 
do by way of hypothesis testing.  For as noted by Yogi Berra (in another context), it's not 
over until it's over.  
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