Calculating Oxide Wt% from Formulae and Normalizing Analyses Answers to Problems

1. Consider the mineral orthoclase with formula $KAlSi_3O_8$. What are the weight percents of K_2O , Al_2O_3 and SiO_2 in orthoclase? Show all work, don't just look up the answers.

Α	В	С	D	Ε	
oxide	moles	at. wt.	=BxC	wt % oxide	
	oxide	oxide			
K20	0.5	94.196	47.09800	16.92	
Al203	0.5	101.9613	50.98065	18.32	
Si02	3	60.083	180.24900	64.76	

2. Suppose you conducted an analysis of an unknown mineral and found it contained the following weight percents:

oxide	wt %		
Na ₂ O	15.33079		
Al ₂ O ₃	25.22062		
SiO ₂	59.44859		
TOTAL	100		

Normalize this analysis by using atomic weights to change it into a formula. You will have to goof around, but if you guess the number of oxygen correctly, all the other subscripts will come out to be integers. Name the mineral!

Α	В	С	D	Ε	F	G	Н	1
					# cats	# ox		to 6 ox
	analysis	ox gfw	Z	ox	=D*B/C	=E*B/C		
Na20	15.33079	61.97894	2	1	0.49471	0.24735	Na	1.00
Al203		101.9613	2	3	0.49471	0.74206	ΑI	1.00
SiO2	59.44859	60.083	1	2	0.98944	1.97888	Si	2.00
				total	1.97886	2.96830	0	6.00

So, formula is $NaAlSi_2O_6 = jadeite$.