Linear Systems and Matrices

Name \qquad

Student ID \#

Purpose: This assignment will test your knowledge of linear systems and matrices using basic Computer Algebra System (CAS) matrix/vector functions.

Format: Your session should begin with a header containing the date, project number, your name, and Student ID number.

Sample Session:

```
% October 12, 2007
% CAS Project 1
% Name:
% Student ID#: 1234567
% Problem 1.
%
A=[1 2 3;4 5 6;7 8 9}
or
A=
123
4 6
7 9
```

Notes: Comment your session well. If using MATLAB put \% sign in the beginning of each comment line.

Problem 1. Consider the linear system:

$$
\begin{aligned}
x-2 y+3 z & =b_{1} \\
-x+3 y & =b_{2} \\
2 x-5 y+5 z & =b_{3}
\end{aligned}
$$

Let b_{1}, b_{2}, and b_{3} be the first three digits of your Student ID number. (For example: My Student ID\# is 2349876 . This makes $b_{1}=2, b_{2}=3$, and $b_{3}=4$.) Use the CAS to solve the system.

Problem 2. Use the CAS to determine which of the following matrices are row-equivalent to

$$
\begin{aligned}
X & =\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
9 & 10 & 11 & 12 \\
5 & 6 & 7 & 8
\end{array}\right] \\
A & =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 3 & 2 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right], \quad C=\left[\begin{array}{cccc}
12 & 11 & 10 & 9 \\
4 & 3 & 2 & 1 \\
8 & 7 & 6 & 5
\end{array}\right]
\end{aligned}
$$

Problem 3. Enter the matrices

$$
S=\left[\begin{array}{ccc}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & 1 & 2
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{ccc}
-5 & 6 & 7 \\
0 & -1 & 2 \\
4 & 0 & -3
\end{array}\right]
$$

where matrix S is made of the digits of your Student ID\#. Use CAS to find:
(a) $S+T$
(b) $4 S-5 T$
(c) $S T$
(d) $(T S)^{T}$

Problem 4. Write the following system of the linear equations in the form $A X=B$ and use CAS to solve the system.

$$
\begin{aligned}
3 x+3 y+4 z & =b_{1} \\
x+y+4 z & =b_{2} \\
2 x+5 y+4 z & =b_{3}
\end{aligned}
$$

where b_{1}, b_{2}, and b_{3} are the first three digits of your Student ID number.

Problem 5. Let $D=\left[\begin{array}{cc}1 & \frac{1}{8} \\ 0 & \frac{1}{10}\end{array}\right]$. Use CAS to find D^{2}, D^{7}, and D^{15}.

Problem 6. Enter the matrices

$$
F=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad G=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad H=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Use the CAS to form the block-matrix $\mathbf{M}=[\mathbf{F} \mathbf{G} ; \mathbf{G} \mathbf{H}]$ and find the smallest value of n such that $M^{n}=M$.

Problem 7. Let S be the same 3×3 matrix as in the Problem 3. Use the CAS to find the inverse of S. Is S a singular matrix? Then adjoin a (3×3) identity matrix I to S to form the 3×6 matrix $\mathbf{L}=[\mathbf{S} \mathbf{I}]$. Row-reduce L using CAS. (If using MATLAB row-redce with rref command) to compute the inverse of S again. What do you observe?

Problem 8. Let S and T be the same 3×3 matrices as in the Problem 3. Use the CAS to calculate
(a) $S^{-1} T^{-1}$
(b) $(S T)^{-1}$
(c) $\left(S^{-1} T\right)^{T}$
(d) $\left((T S)^{T}\right)^{-1}$.

Problem 9. Let S and T be the same 3×3 matrices as in the Problem 3. Use CAS to calculate the determinants of the following matrices:
(a) S
(b) T
(c) $S T$
(d) $(S T)^{-1}$.

Problem 10. Let real number t be your birthday. (For example if your birthday is October 12, 1975 then $t=12$.) Use CAS to calculate the determinant of the matrix:

$$
A=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

Does the value of the determinant depend on t ? Explain your answer.

