
Activity 13

Work-Energy Theorem: W = ∆E(Solution)

Pre-Lab

1. Suppose a hockey puck of mass m is at rest on the ice. A surly Canadian hits the puck and sends it sailing
across the ice at velocity v. According to the Work-Energy theorem, how much work did the player’s stick
do on the puck?

2. Suppose the referee lifts the puck from rest on the ice and holds it (at rest) at eye-level (height h) to
examine it. Consider your system to consist of the puck only.

(a) How much work did the referee do on the puck?

(b) What is the change in kinetic energy of the puck?

(c) How does this agree with the Work-Energy theorem?

Instructor Initials:

Answers:

(1) The Work-Energy theorem states that the work done on a system is equal to the change in the system’s
energy. Here, our system is the puck. Assuming no energy is dissipated (like heating the puck, making a
sound, etc), then the change in energy of the puck is simply the change in its kinetic energy,

W = ∆E = ∆K = Kf − Ki =
1

2
mv2

f

1



(2) (a) In this case, the puck began and ended at rest, so there is no change in kinetic energy. Since the
system is just the puck, there can be no change in gravitational potential energy. So the total work
done on the puck must be ZERO! however we know there would be a change in potential energy if
the Earth were in the system. We know that if the Earth is not in the system, then the force of gravity
does work which we can either get from W =(force of gravity times displacement), which would be
negative in this case because the force is down and the displacement is up, or just realizing it is the
negative of what the change in potential energy would be:

Wg if Earth not in system = −∆Uif Earth is in system = −(Uf − Ui) = −mgh

Since W = 0 and the only other “thing” operating on the puck is the person, Wperson +(−mgh) = 0
so

Wperson = mgh,

where h is the height the puck is lifted above the ground. This makes sense, since the referee must
lift the puck, providing a force upward, against gravity, in the same direction as the motion.

(b) The puck began and ended at rest, so the the change in kinetic energy is ∆K = 0.

(c) It agrees, assuming there is no dissipation of energy, as long as you remembered how to treat the work
done by the Earth!

Purpose

To measure the work done on a body, and to compare it to its change in energy. Since the position of the object
with respect to the direction of the gravitational force is not changing, and the object is not deformable, kinetic
energy is all we have to worry about. (We are going to neglect friction, etc.)

Equipment

• PASPORT Interface · force sensor (usb) · motion sensor (usb)

• Table clamp with pulley · Triple-beam Balance

• Cart · End-stop · 1.2 meter track

• Mass hanger and mass set · String

13.1 Theory

When an object of mass m experiences a net force Fnet over a distance d parallel to the force, the work done on
it is:

W = Fnetd

If an object’s vertical position is changed, its gravitational potential energy changes if we consider the Earth to
be part of the system (if the Earth isn’t in the system, potential energy doesn’t exist and we would talk about
work done by the Earth on the object, like in the pre-lab question). However, in this experiment, the object we
are interested in (cart + sensor) remains on the same horizontal level, so only the kinetic energy of the object is
affected. The change in the kinetic energy is equal to the work done:

W = ∆KE = KEf − KEi =
1
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where W is the work, vi the initial velocity, and vf the final velocity.
The force exerted by the hanging object on the cart + sensor is not just mhangingg. Why not? What is it

really? Think back to the Atwood’s Machine demo we did as a group if you don’t get it immediately!
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13.2 Procedure

In this activity, an approximately constant force is applied to a cart, with the help of a string placed over a pulley
with a known mass suspended at its end. The force sensor measures the force, and the motion sensor measures
the motion of the cart as it is pulled. DataStudio displays the force applied, the position and the speed of the
object. We will use the program to integrate the area under the force versus position curve. We will identify the
quantity represented by this area, and see how this relates to properties of the system, and our understanding of
energy.

13.2.1 Computer Setup

1. Open DataStudio.

2. Click on “File Open”.

3. Select the UPI folder, and open file “Act13”.

13.2.2 Equipment Setup

1. Measure the mass of the cart, and that of the force sensor (in kilograms), and record the sum of the two
values in the Data Table.

2. Place the cart on the track. Check that the track is level, by adjusting the feet, so that the cart does not
roll one way or the other.

3. Cut a piece of string that is about 10 centimeters longer than the distance from the pulley to the floor.
Connect one end of the string to the sensor’s hook. Place the string in the pulley’s groove.

4. Attach the mass hanger to the other end of the string. The mass hanger should be suspended just a little
above the floor when the end of the cart is against the end-stop.

13.2.3 Data Recording

1. Pull the cart away from the pulley so that the object at the end of the string (mass hanger) is just below
the pulley.

2. Click the START button to begin recording data.

3. Release the cart so that it can move towards the pulley.

4. Click the STOP button to end data recording just before the cart reaches the end stop. You will see “Run
# 1” appear in the Data List in the Experiment Setup window.

5. Click on the Table display to make it active. Click the Σ button on the top menu bar of the display. The
bottom part of the Table will display Min (Minimum), Max (maximum), Mean, and Std. Dev (standard
deviation). (If one of these values does not appear, click the down arrow next to the Σ button and click to
check the one that does not appear).

6. Record the value of the “max” (or vf ) of the Velocity (m/sec) for Run # 1 in the Data Table.
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13.2.4 Analyzing Data

1. Calculate the kinetic energy of the cart. Click the “Calculate” button (next to the time display) to open
the Experimental Calculator:

2. In the formula area, type 0.5 and type an asterisk, *, for multiplication.

3. Type the value for the mass of the system (consisting of cart and sensor), type an asterisk again, type a
“v”, and then type ˆ 2 (which means to square the speed).

4. Now we need to define our variable “v” as velocity. Click the down arrow under “Variables” and click “Data
Measurement”. You will be asked to choose a data source; click on Velocity and then OK.

5. Click the “Properties” button. Under the “Y variable” tab, type “Kinetic Energy” in the Variable Name
box. Type “J” in the Units area and click ok.

6. Click “Accept” on the calculator menu and close the window. Your equation appears in the left Data menu.
Drag the Table icon to the run you want to consider to view a table of your Kinetic Energy values.

7. Click the Σ button to view max, min, mean, and standard deviation values.

8. Record the Max (maximum) value for KE(J) in the Data Section.

IMPORTANT: If your cart did not start from rest, also record the minimum values for velocity and kinetic energy,
and calculate the change in kinetic energy for the table below.

10. Click the Graph to make it active. Click the Σ button to open the Statistics box in the graph. Click the
Autoscale button, leftmost on the graph’s menu bar, to rescale the graph to fit the data.

11. Click the down arrow next to the Σ button. Select Area from the menu. The DataStudio program integrates
the area under the curve of force versus position. (What is the zero of position here?) The computer may
display this value as negative. (If it does, it means the force sensor is calibrated to read positive in the
opposite direction the motion sensor reads positive).

12. Record the value of the area under the curve (the integration value) of Force (Newtons) versus Position
(m) (Newton-m) in the Data section.

Analysis-13.1:What is the quantity represented by the area under the graph? If we use a consistent sign convention,
what sign should this quantity be? Why?

Answer:It is the work, since work is the integral of force times distance in direction of force, and an integral is
the same as the area under the graph. It should be positive, since the force and displacement are in the same
direction. This is also born out by the fact that the energy of the system that the work is being done on increases.
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Mass of Cart and Sensor (kg)

vf  (maximum) (m/s)

vf  (minimum) (m/s)

KE (maximum) (J)

KE (maximum) (J)

∆KE (max - min) (J)

Value of integral from graph (N•m)

Data Table

5



Analysis-13.2:Please answer the question from the theory section. Yes, this means you need to read it to find the
question.

Answer:Consider the free body diagrams shown in the figure for the situation depicted. If the string is “perfect”,
then the tension force is the same at each end of the string, and the magnitude of the acceleration is the same
for the cart and the hanging mass. Taking the direction of the acceleration to be positive in each case, Newton
II gives

m1a = ΣF1 = T m2a = ΣF2 = m2g − T

The force on the cart is the tension force, but we have two unknowns here. I’m going to solve both equations for
T , then set them equal and solve for a:

m1a = T m2a = m2g − T

T = m1a T = m2g − m2a

m1a = m2g − m2a

a =
m2

m1 + m2

g

and so the force on the cart is
T = m1a =

m1m2

m1 + m2

g (≡ µg)

m1

m2

m1

a

m2

a

F
g
=m2g

T
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Analysis-13.3:What is the percent difference between the change in kinetic energy and the work done?

Observe-13.4:What are the possible reasons for any difference? Since we live in the real world, which would you
expect to be greater? Why?

Answer:You would expect friction to dissipate some of the energy provided by the work done, so that the magnitude
of the change in kinetic energy would be less than the magnitude of the work.

Observe-13.5:Did your results agree with the reasons you gave? If not, what might we have neglected or not
gotten quite right that would so affect your answer? Why would it affect it this way? Figure out how to fix it for
extra credit!

Answer:There are two primary cases where students may get a larger change in kinetic energy than in the work.
To find the first involves looking at the graph. An incorrect zero value can cause a decrease in the magnitude
of the calculated area. This can be seen on the graph, and the error approximately calculated from width times
height, where the height is the value of force seen on the graph where it should be zero.
The other normal source is the use of a different position for the work calculation and the minimum of kinetic
energy. One is accounted for by distance and one by velocity. The best solution to this is to plot both position
and velocity vs. time, and make sure that the velocity values you are using are from the same times as the position
values used for the calculation of area.
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