Draft Assessment Data Analysis Plan

DNS 1/22/13

There are three main areas that fall under data analysis at this point:

• We must evaluate student responses from GLE multiple choice questions using standard test theory protocols.

GLE multiple choice analyses are relatively straightforward. Distractor and question validity analyses will be completed using raw student responses. For single answer questions, distractors should receive a minimum 5% response rate and correct response rates should fall between 25-85%. Simple frequency analyses will be used for multi-select questions. Questions that pass frequency analyses screening will be scored using the GLE rubric (single answer correct = 1, incorrect =0; multi-select answers all correct = 2, more correct than incorrect = 1, more incorrect than correct = 0). Exact procedures for completing these analyses using our GLE scoring scheme are TBD. Rubric score frequencies for multi-select questions will be analyzed to ensure all scores are possible. Questions that pass screening will be consolidated at the student level and used for item discrimination analyses. Cutoff discrimination scores are: optimum 0.35-1.0; minimum 0.2. Standard psychometric tests will be completed for questions that meet frequency and discrimination index criteria.

We need to establish inter-rater reliability for scoring of student essay responses.

Some sample of GLE essay questions will be independently scored by at least two raters using existing rubrics. Scores will be compared for inter-rater reliability. Where necessary, rubrics will be modified and student responses re-scored. If possible, student responses will be used in discrimination analyses and to establish benchmark examples for future scoring.

We need to independently evaluate student embedded assessment data.

Samples of embedded assessments provided by piloting developers (and testers?) will be independently scored using module rubrics. Inter-rater reliability will be assessed. Scores will be compared to those provided by piloting institutions and used to inform curriculum revisions. A matrix mapping embedded assessments to project goals will be developed as shown below.

	Climate of Change	
Course/module addresses one or more geoscience-	Embedded	Earth's Mineral
related grand challenges facing society:	Assessments	resources
Resource Issues		Concept Map
Environmental issues		
Biogeochemical cycles		
Biologic diversity		
Ecosystem functioning		
Climate variability	Level 2	
Hydrologic forecasting		
Environmental Change impact on pathogens		
Resource Extraction		Question 1 (3)
Land use/Land Cover		Question 1 (4)
recycling		

Course/module develops student ability to address interdisciplinary problems:

Interactions between Earth Science and ...

Economic issues	Question 2 (5)
Societal issues	Concept Map
Policy Issues	
Geography	
Social Sciences	
Humanities	

Course/module improves student understanding of the nature and methods of geoscience and developing geoscientific habits of mind

Making observations		
Testing hypotheses		
Comparing modern processes to those in geologic record		
Comparing commonalities and differences		
Converging lines of evidence		
Testing through prediction	Level 1	
Recognizing role of observation		
Spatial and temporal organizational schemes		
Earth is long-lived		
Earth as a complex system		
Temporal variety of earth processes (long and short)		
Collaboration as a methodology		

Course/module incorporates systems thinking:

Multiple system approach	Level 3	
Open versus closed systems		
Importance of interactions between spheres	Level 3	Question 2 (3)
Perturbation in one system affects others	Level 3	
Multiple causal factors influencing outcomes		
Forcing and feedback mechanisms	Level 3	
Flux, reservoir, residence time thresholds		
Linkages between human and environmental systems		