

What is a hydrologic tracer?

- Any substance that can be used for tracking water movement is a tracer
- An ideal tracer behaves exactly as the traced material behaves
- A conservative tracer does not have sources or sinks (decay, sorption, or precipitation) in the system
- Environmental tracers exist in the system, applied tracers are added by scientists to study

Example of an applied (dye) tracer for studying groundwater-stream interactions

This tracer is non-conservative because it gets metabolized.

Applied tracer analyzed via breakthrough curve

- BTC track advection and dispersion of a tracer.
- modeled to learn about flowpaths and stream behavior.

http://igwmc.mines.edu/software/igwmcsoft/otisreview.htm

Environmental tracers

- Naturally occurring substances
- Anthropogenic signals
 - CFCs/SF₆ in atmosphere and groundwater → date groundwater recharge
 - Caffeine, hormones, pharmaceuticals → "emerging contaminants" that can identify wastewater
 - Disinfection by products from wastewater treatment process
 - Fecal coliform

Environmental tracers: Conductivity

- Electrical conductivity –the measure of how a material accommodates the transport of electric charge.
 - In water, it varies with the amount and type of dissolved ions.
 - It varies with temperature, so we normalize and call it specific conductance.

Isotopes as Environmental Tracers

- Isotopes are the same element, but with different numbers of neutrons.
- Two groups of isotopes:
 - Radioactive: atoms that spontaneously break down their nuclei to form other isotopes
 - Stable: do not spontaneously break down to form other isotopes

Radioactive Isotopes in hydrology

- Age of groundwater
- Measure groundwater flow rates
- Tracers for groundwater movement
- Choose isotopic system:
 - Half-life of radioisotope
 - Reactivity of isotope in system of interest

Stable Isotopes In Hydrology

 Changes in isotope ratios in environment from physical, chemical, and biological processes due to mass differences between isotopes

Stable Isotopes Tracing the Hydrologic Cycle

- □ Stable Isotopes of H₂O
 - □ ¹H, ²H (²D), ¹⁶O, ¹⁷O, ¹⁸O
- □ Vibrational frequency (energy) differences
- □ Provide characteristic fingerprint of origin
- Applications in hydrogeology
 - □ Provenance of water
 - □ Identify processes that formed waters
 - Separating hydrographs into "old" and "new" water

Animations courtesy of E. Schauble (UCLA)

Slide from E. Griffith, UT Arlington

Isotopologues of Water

Isotopologues are molecules that differ only in their isotopic content. What are the isotopologues of water?

Isotope Ratio notation

$$\delta^{18}O = \left[\frac{\binom{^{18}O}{^{16}O}_{sample}}{\binom{^{18}O}{^{16}O}_{standard}} - 1\right] \times 1,000$$

- $\square \delta = \text{value } \%$ 'per mil'
- O and H are normalized to SMOW standard mean ocean water
 - $\delta^{18}O = 0\%, \delta^{2}H = 0\%$
- Positive vs. negative delta values
- □ Isotopically heavy vs. light, enriched vs. depleted

In H_2O , H and O isotopes \sim co-vary

Isotopic fractionation: Detectable change in the ratio of an isotopic pair

- □ Due to mass differences of isotopes—affect vibrational frequency of atom which affects ability to make (& break) bonds w/ surrounding environment
- 18O and ²H content of water changes only through fractionation associated with phase changes
- Conservative behavior once isotopes become part of water molecule, they change only through mixing

Equilibrium vs. Kinetic fractionation

Fractionation is a function of temperature.

Greater
fractionation at
lower
temperatures.

- Equilibrium fractionation: vapor pressure of water containing light isotopes > water containing heavy isotopes, therefore vapor is enriched in light isotopes
- Kinetic fractionation: rapid phase changes increase fractionation because light isotopes diffuse more rapidly than heavy ones

Fractionation effects associated with phase changes of H₂O

- □ **Condensation** liquid that forms is heavier than surrounding water (equilibrium fractionation)
 - So, precipitation selectively removes ¹⁸O and ²H from the vapor phase
- Evaporation vapor that forms is lighter than surrounding water (kinetic fractionation)
- Snowmelt residual snowpack becomes isotopically heavier as light isotopes melt out first (equilibrium fractionation)

Fractionation effects associated with phase changes of H₂O

July snowmelt, Stenkul Fiord, Ellesmere Island, Nunavut, Canada

5 key patterns in ¹⁸O and ²H content of precipitation

Precipitation becomes isotopically...

- □ lighter as air mass moves inland (Continentality)
- □ lighter towards the poles (Latitude)
- lighter with increasing elevation (Altitude) orographic effect
- □ lighter in winter than summer (Seasonality)
- □ lighter as more has occurred (Amount)

Text modified from Doug Burns and Tomas Vitvar: http://www.esf.edu/hss/IsotopeWS/Burns-Vitvar%20presentation/sId001.htm

Contours of δD and $\delta^{18}O$ in rainwater What patterns do we see in the isotopic composition of rainwater? 1) latitudinal effect 2) continental effect 3) altitude effect 4) seasonal effect* 5) amount effect* (8'80 values in parentheses)

Fractionation effects associated with phase changes of H₂O

Seasonality of precipitation isotopes, Eureka, Nunavut, Canada

Precipitation: Equilibrium & the "Global Meteoric Water Line"

Slide from E. Griffith, UT Arlington

Evaporation: Humidity & Local Meteoric Water Lines

12

Use of O and H isotopes to help solve geochemical/hydrologic modeling problems

- Source of water
 - Rainwater new or old
 - Evaporated water
 - Recharge at a certain altitude
 - Age of water
- Mixing of waters
 - Leakage from lakes, rivers, aquifers
 - Groundwater surface water interactions
 - Contributions of snowmelt

Lava flows

- Salinization mechanism (plot of d vs concentration)
 - Evaporates surface water
 - Seawater
 - Dissolved evaporites
 - Mixing with connate brines
 - Reaction with rocks

Nash Crater Sand Mountain Belknap Crater Collier Cone Sims Butte Case Study: Irish Mountain ago Isotopes as tracers of groundwater age and So, Fork McK. R origin USGS stream gage watershed boundary volcanic center A. Jefferson, G.E. Grant, T.P. Rose normal fault, certain --- normal fault, approx. located Water Resources Research, 2006

Our use of isotopes: hydrograph separation

(data from McGlynn and McDonnell (2003)). http://serc.carleton.edu/microbelife/research_methods/environ_sampling/stableisotopes.html

Hydrograph separation using isotope tracers

- Method takes advantage of conservative mixing of ¹⁸O and ²H
- □ Two types
 - Time source new and old water
 - Geographic source contributions from different landscape positions
- Punchline: Isotope methods clearly show much of stormflow or peakflow is old water stored in catchment prior to storm (in forested watersheds)

 $Text\ modified\ from\ Doug\ Burns\ and\ Tomas\ Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar\%20 presentation/sld001.htm$

Important points to remember

- Tracer separation techniques provide components of the hydrograph, not the same thing as a hydrologic flow path
- Usually need hydrometric data to determine contribution from a flow path
- Hydrograph separation is better for disproving than proving a streamflow generation process

Isotopes in storm-discharge analysis

lqbal, M.Z. 1998. Application of environmental isotopes in stormdischarge analysis of two contrasting stream channels in a watershed, Wat. Res.32(10): 2959-2968

Fig. 3. Temporal variations in the oxygen isotope ratio (Cedar River).

Isotope Hydrograph Separation: How is it done?

- □ Simple mass balance expression
- □ Streamflow = new water + old water
- $\square Q_s \delta_s = Q_n \delta_n + Q_0 \delta_n$
- Rearrange to solve for the new water discharge at any point in time
- $\square Q_n = Q_s \times (\delta_s \delta_o) / (\delta_n \delta_o)$

 $Text\ modified\ from\ Doug\ Burns\ and\ Tomas\ Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar\%20 presentation/sld001.htm$

Isotopes in storm-discharge analysis

lqbal, M.Z. 1998. Application of environmental isotopes in stormdischarge analysis of two contrasting stream channels in a watershed, Wat. Res.32(10): 2959-2968

g. 4. Isotopic evolution of instantaneously discharged water in Cedar River by simple mixing

Isotopes in storm-discharge analysis

Storm hydrograph separation of the Cedar River using two-component mixing model oxygen isotope data).

Assumptions of Isotope Hydrograph Separations

- □ Significant differences in isotopic content of new and old water
- New and old water content has a constant isotopic content in space and time, or variation can be accounted for
- Contributions of water with with isotopic content different from old water negligible – soil water, stored surface water, multiple sources of gw

 $Text\ modified\ from\ Doug\ Burns\ and\ Tomas\ Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar\%20 presentation/sld001.htm$

General results of hydrograph separation studies

- Old water is typically >50% of peakflow, 60-80% of total storm runoff at most sites (but humid, forested site bias)
- Agricultural and urban watersheds are dominated by new water at peak flow
- Wetlands and impoundments promote high proportion of old water in stormflow

Text modified from Doug Burns and Tomas Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar%20presentation/sld001.htm

Where does old water originate?

- Saturation overland flow
- Macropore flow
- □ Transmissivity feedback hydraulic conductivity decreases exponentially with depth, results in perched water table → subsurface stormflow
- Groundwater ridging/capillary fringe soils near saturation close to stream, rapid water table rise