Olympic Peninsula Group

Datasheet for finding GPS location and velocity data from the EarthScope Network of the Americas (NOTA) website for sites NEAH, P401 and P403

Name: \qquad

Date on which the data were acquired from the NOTA website: \qquad
Geographic coordinates using WGS 1984 datum, North American 2008 stable reference frame (NAM08)

| Site Decimal Lat Decimal Long | |
| :--- | :--- | :--- |
| NEAH | |
| P401 | |
| P403 | |
| P4 | |

GPS site velocities relative to NAM08, expressed in mm/year

Now plot the horizontal velocities on the map on the following page.

Olympic Peninsula Group. Carefully draw the E-W and N-S velocity vectors associated with the three NOTA GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

Total horizontal speeds: NEAH \qquad mm/yr; P401 \qquad mm/yr; P403 \qquad $\mathrm{mm} / \mathrm{yr}$

 m

Wasatch Front Group

Datasheet for finding GPS location and velocity data from the EarthScope Network of the Americas (NOTA) website for sites P088, P116 and COON

Name: \qquad

Date on which the data were acquired from the NOTA website: \qquad
Geographic coordinates using WGS 1984 datum, North American 2008 stable reference frame (NAM08)
Site Decimal Lat Decimal Long
\qquad
\qquad

COON \qquad
\qquad
GPS site velocities relative to NAM08, expressed in mm/year

Now plot the horizontal velocities on the map on the following page.

Wasatch Front Group. Carefully draw the E-W and N-S velocity vectors associated with the three NOTA GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

San Andreas Group

Datasheet for finding GPS location and velocity data from the EarthScope Network of the Americas (NOTA) website for sites P538, P539 and P541

Name: \qquad

Date on which the data were acquired from the NOTA website: \qquad
Geographic coordinates using WGS 1984 datum, North American 2008 stable reference frame (NAM08)
Site Decimal Lat Decimal Long
\qquad
GPS site velocities relative to NAM08, expressed in mm/year

Now plot the horizontal velocities on the map on the following page.

San Andreas group. Carefully draw the E-W and N-S velocity vectors associated with the three NOTA GPS sites shown as green dots in the map below. A negative east component is a vector pointing west, and a negative north component is a vector pointing south. The graphs are scaled in units of millimeters per year. Then draw the total horizontal velocity vector for each site, and determine the horizontal speed (that is, the length of the total horizontal velocity vector) of each site. You can determine the total horizontal speed by one of the methods shown at right below.

Total horizontal speeds: P538 \qquad mm/yr; P539 \qquad mm/yr; P541 \qquad $\mathrm{mm} / \mathrm{yr}$

