1. The students can be assessed on completion of the assignment itself.

Rubric:

- 0 Didn't complete or had no idea what to do.
- 1 Completed, and had the general idea, but made some small mistakes which kept them from getting the right numerical answers to the test data.
- 2 Got it right.

2. Related question on midterm

(This question asks them to apply what they've done in a slightly different way, to nucleotides)

Devise optimal match and mismatch parameters for a nucleotide database search where you expect homologous sequences to have 66% identity.

Assume:

- 25% background frequency of each nucleotide
- $\lambda = .2$
- all matches are equally likely, and all mismatches are equally likely. ie the matrix looks like this:

	Α	С	G	Т
Α	m	μ	μ	μ
C G T	μ	m	μ	μ
G	μ	μ	m	μ
T	μ	μ	μ	m

What are the best parameters (as integers)? Explain the reasoning you used to arrive at this.

Rubric:

- 2 got it
- 1.5 If made small numerical error (didnt' round, didn't divide by 12 for mismatch etc)
- 0 Didn't know how to do it.

3. Attitude and belief (and/or affective) assessments

Creating a scoring matrix helped me achieve a better understanding of the meaning of alignment scores.

- a. stronly agree
- b. agree
- c. undecided
- d. disagree
- e. strongly disagree