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Abstract

Background: The most diverse marine ecosystems, coral reefs, depend upon a functional
symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms
underlying the establishment, maintenance, and breakdown of the symbiotic partnership are,
however, not well understood. Efforts to dissect these questions have been slow, as corals are
notoriously difficult to work with. In order to expedite this field of research, we generated and
analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and
its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study
cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses.

Results: A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs
(contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality
ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which
unique sequences derived from the host versus symbiont genomes, we found that the contribution
of the symbiont genome to the transcriptome was surprisingly small (1.6—6.4%). This may reflect
low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence
databases, a small number of symbiont cells relative to the total cellular content of the anemones,
or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes
that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative
stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and
UniSeqs along with annotation results and other tools have been made accessible through the
implementation of a publicly accessible database named AiptasiaBase.

Conclusion: We have established the first large-scale transcriptomic resource for Aiptasia pallida
and its dinoflagellate symbiont. These data provide researchers with tools to study questions
related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This
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groundwork represents a crucial step towards the establishment of a tractable model system that
can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-
generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and
thus the extent of AiptasiaBase, should expand dramatically in the near future.

Background

Many biological systems rely on symbiotic interactions
between different organisms. One of the most dramatic
examples is the coral reef ecosystem, which has at its heart
a mutualistic partnership between corals and endosymbi-
otic, dinoflagellate algae. The dinoflagellates are classified
in a single genus, Symbiodinium, but molecular methods
have revealed a high genetic diversity in this genus [1,2].
The onset of these symbioses has been shown to display
flexibility, but a range of specificity, i.e. from highly flexi-
ble to highly specific, is apparent during its maintenance
[3-8]. This process is likely to involve early recognition
mechanisms [9,10] and an evasion of the hosts' digestive
and immune systems [11], as well as adaptations to
diverse ecological niches [12,13] and physiological accli-
mation [14,15]. There have also been controversial dis-
cussions of whether Symbiodinium populations may shift
toward more heat-tolerant types as a consequence of ther-
mal stress ("bleaching") in order to adapt to environmen-
tal changes [16-18] such as increasing seawater
temperatures. In light of global climate change, this sub-
ject, i.e. cnidarian bleaching, has received much attention
as devastating mass bleaching events have increased both
in frequency and geographic extent [19]. Nonetheless, our
knowledge of the underlying cellular and molecular
mechanisms that facilitate the recognition between the
partners, and determine the specificity, dynamics, and col-
lapse of cnidarian-dinoflagellate symbioses, is limited.

The cellular and molecular interactions between host and
symbiont cells are important targets for genetic and
genomic dissection, but corals are notoriously difficult to
work with. For example, corals form large, slow-growing
colonies that are difficult and costly to maintain in the
laboratory, and their handling for microscopy and ame-
nability to other cell biological, biochemical, and genetic
methods is complicated by the calcareous skeleton precip-
itated by reef-building corals. What is needed to make
rapid advances in this field is a model system that pos-
sesses the key characteristics of coral symbiosis, but allows
more facile laboratory investigation (for a detailed review
see [20]). The sea anemone Aiptasia represents a good can-
didate system [20], as it possesses the same mutualistic
relationship with Symbiodinium spp., but lacks the calcar-
eous skeleton that hinders cellular-level work. It is widely
distributed, and found in shallow tropical marine envi-
ronments worldwide. Sequence characterized amplified
region (SCAR) data indicate that the vast majority of

Aiptasia worldwide (encompassing two described species,
A. pallida and A. pulchella), appear to be genetically homo-
geneous (Santos Lab at Auburn University, pers. comm.).
The one exception is a closely related, but genetically dis-
tinct, lineage potentially restricted to the Florida Keys.
Data from the Santos Lab also indicate that natural popu-
lations of Aiptasia from the Florida Keys preferentially
host Symbiodinium spp. comprised of only clade A or both
clades A and B, whereas those from the remaining global
range host clade B exclusively. Typically considered a pest
organism by seawater aquarists, Aiptasia is hardy and pro-
liferates rapidly by asexual reproduction. Individual pol-
yps can be maintained in a symbiotic or aposymbiotic
state (i.e., with and without symbionts, respectively),
experimentally re-infected with a variety of Symbiodinium
strains [21,22], and cultured at low cost [23]. In fact,
numerous studies have addressed symbiosis-related ques-
tions using A. pallida and its sister species A. pulchella by
applying multiple tools ranging from microscopy to RNA-
interference methods [24-29]. The generation of genomic
resources for Aiptasia would therefore greatly advance
research addressing the understanding of symbioses at a
molecular, cell-biological, and genomic level.

As a cost-effective alternative to sequencing the genome of
an organism, the generation and analysis of expressed-
sequence-tag (EST) libraries provides an efficient method
for discovering novel genes, estimating gene content, and
approximating levels of gene expression. Once estab-
lished, these resources can be utilized for comparative
genomics studies or the construction of gene expression
microarrays [30]. Among cnidarians, the extensive
genomic resources now available for the non-symbiotic
sea anemone Nematostella vectensis have opened new per-
spectives on the study of basal metazoans [31], and sev-
eral EST resources have been generated for symbiotic
cnidarians (predominantly corals) and Symbiodinium spp.
[32-34]. However, to date, only one small-scale project
has generated ESTs (N = 870) for the symbiotic anemone
Aiptasia pulchella [35].

In this study, we report the generation and analysis of
10,285 high-quality ESTs from a Symbiodinium clade A-
hosting clonal population of Aiptasia pallida that was
likely derived from an individual originating from the
Florida Keys lineage, which were processed through a soft-
ware pipeline [36] resulting in a user-friendly, queryable,
web-accessible database named AiptasiaBase. A BLASTx-
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based approach was used to estimate the relative contribu-
tions of each partner to the mixed cDNA library, and we
were able to identify numerous genes involved in key
processes of cnidarian-dinoflagellate symbioses.

Results and Discussion

EST library construction and assembly

A total of 6,448 cDNA clones were bi-directionally
sequenced, resulting in 12,896 raw chromatograms,
which served as input for the processing pipeline. After
base calling by phred [37], Lucy [38] discarded 2,556 low-
quality sequences, short or insert-less sequences, and vec-
tor or polyA-only sequences. An additional 55 sequences
were removed by seqclean [39], leaving 10,285 high-qual-
ity ESTs (from 5,450 cDNA clones) for further processing
(success rate ~80%). Assembly of these ESTs by cap3 [40]
resulted in the generation of 1,427 contigs, which ranged
from 112 to 3,440 bp in length and contained 2 - 259
ESTs (mean: 4.8). Together with the remaining 3,498 sin-
gletons, a total of 4,925 unique sequences (UniSeqs) were
generated. Because of the possibility that two (or more)
UniSeqs originated from the same transcript, we also esti-
mated the number of unique genes (unigenes) in our
dataset by assembling only the reverse reads of the direc-
tionally cloned cDNAs. The resulting estimate of 2,564
unigenes compared to the 4,925 UniSeqs is likely to
reflect the large average size (1.95 kb) of inserts in the
cDNA library; thus, in many cases, UniSeqs represent the
3'and 5' ends of genes for which the central parts were not
captured due to Sanger-sequencing length limitations
(600-800 bp). In addition, different splice variants or
alleles of the same gene may have contributed to the
excess of UniSeqs over unigenes. Detailed pre-assembly
statistics are summarized in Additional file 1: Quality con-
trol and assembly statistics.

Previously, a small-scale EST project was conducted in
order to compare the abundance of transcripts between
symbiotic and aposymbiotic Aiptasia pulchella polyps [35].
The present study included bi-directional sequencing, and
the total number of ESTs is more than 14 times larger than
in the earlier study. Therefore, the availability of almost
5,000 UniSegs for about 2,500 unigenes represents a rich
transcriptomic resource, previously unavailable at this
scale, for a symbiotic anemone.

Annotation of unique sequences and implementation of
AiptasiaBase

All UniSeqs were assigned putative identities based on
BLASTXx hits (E-value cutoff: 1e-5) to the UniProt Knowl-
edgebase databases SwissProt and TrEMBL [41]. About
37% and ~63% of the UniSeqs found hits in SwissProt
and TrEMBL, respectively, leaving ~36% of the UniSeqs
without similarities to known proteins. Because the
TrEMBL database contains protein sequences based on
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conceptual translations of all nucleotide sequence entries
in EMBL/GenBank/DDBJ, we chose to annotate the
UniSeqs according to the curated SwissProt entries.
Assignments of gene ontologies (GO) could be made for
about one third of UniSeqs in each of the GO categories:
molecular function, biological process, and cellular com-
ponent. Because our cDNA library represents the symbi-
otic, adult life-history stage of A. pallida, the GO resource
generated in this study sets the stage for statistical assess-
ments of over- or under-representation of specific GO-cat-
egories in libraries obtained from anemones under
different conditions such as life-history stages, symbiotic
state (symbiotic vs. aposymbiotic), or environmental con-
ditions (temperature, salinity, nutrients, etc.). In addition
to BLAST and GO annotations, all UniSeqs were screened
for single-nucleotide polymorphisms (SNPs) and simple-
sequence repeats (SSRs), providing resources for the
investigation of gene polymorphisms between individu-
als and/or populations. The prediction of open reading
frames within UniSegs also provided the basis for domain
annotations at the protein level. About 25% of UniSeqs
matched a protein domain entry in the Pfam database
[42].

One of the primary challenges of sequencing ESTs from a
mixed transcriptome originating from two or more part-
ners is to assign sequences to the proper genome of origin.
Taking a bioinformatic approach to this problem, we con-
structed taxon-specific databases representing either "Cni-
daria-only" or "Alveolata-only" (i.e., dinoflagellates and
their relatives) sequences from GenBank, and then per-
formed BLASTx-searches against those databases as well as
the complete non-redundant database (see Methods). We
then employed a best-BLASTx-hit (BBH) approach (Addi-
tional file 2: Flow diagram illustrating BBH approach) to
estimate the numbers of ESTs that originated from A. pal-
lida and Symbiodinium spp., respectively, at various levels
of confidence (Table 1). Irrespective of the confidence
level, about one quarter of ESTs had no BLASTx-hit (E-
value cutoff 1e-5). At the different levels of confidence, 56
- 70% and 1.7 - 6.4% were predicted to originate from
the anemone and the Symbiodinium genomes, respectively
(Additional file 3: Detailed EST (N = 10,285) distribution
and assignment). The relatively small fraction of Symbiod-
inium ESTs could be expected given that Symbiodinum spp.
are spatially restricted to the endodermal tissue layer of
the host and that no special effort was made to disrupt the
algal cell walls during the preparation of the RNA (see
Methods). Furthermore, the number of UniSeqs without
a significant BLASTx hit may be higher for Symbiodinium
transcripts. However, the uncertainty about the origin of
non-annotated sequences represents a current limitation
to our approach. Ongoing and future genome-sequencing
projects for symbiotic cnidarians and their dinoflagellate
endosymbionts should soon become available and help
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Table I: Predicted genome-of-origin for contigs and singletons of the holobiont

Type of UniSeq # of UniSeqs Predicted genome of origin  Prediction assignment Confidence # of ESTs (%)
Contig 775  Aiptasia BBH = Cnidaria high 4029 (39)
Contig 32 Symbiodinium BBH = Alveolata high 88 (0.86)
Contig 144 Aiptasia E-value(Cnidaria) < E-value(Alveolata) = medium 540 (5.3)
Contig 63 Symbiodinium E-value(Alveolata) < E-value(Cnidaria)  medium 228 (2.2)
Contig 14 Aiptasia sim%(Cnidaria) > sim%(Alveolata) low 576 (5.6)
Contig 7 Symbiodinium sim%(Alveolata) > sim%(Cnidaria) low 27 (0.26)
Contig 2 nla no assignment - 5 (0.049)
Contig 390 n/a no hit - 1294 (12)
Sum 1427 6787 (66%)
Singleton 1731 Aiptasia BBH = Cnidaria high 1731 (16)
Singleton 91  Symbiodinium BBH = Alveolata high 91 (0.88)
Singleton 307 Aiptasia E-value(Cnidaria) < E-value(Alveolata)  medium 307 (2.9)
Singleton 175  Symbiodinium E-value(Alveolata) < E-value(Cnidaria)  medium 175 (1.7)
Singleton 42 Aiptasia sim%(Cnidaria) > sim%(Alveolata) low 42 (0.41)
Singleton 49  Symbiodinium sim%(Alveolata) > sim%(Cnidaria) low 49 (0.48)
Singleton 1103 n/a no hit - 1103 (10)
Sum 3498 3498 (34%)

Details can be found in Additional file 2: Flow diagram illustrating BBH appraoch and Additional File 3: Detailed EST (N = 10,285) distribution and

assignment.

to uncover the origins of sequences without currently
known homologs in other organisms. This will provide an
interesting opportunity to revisit our data set to look fur-
ther at these perhaps taxonomically restricted genes.

Using an EST-processing software (EST2uni) [36], we
stored all ESTs, UniSeqs, and annotations in a queryable

database named AiptasiaBase (database =
AiptasiaBase_v1), which is accessible through the URL:
http://aiptasia.cs.vassar.edu/AiptasiaBase/index.php. In
addition to the results generated by the software, we have
included the annotation of UniSeqs according to KEGG,
which provides a convenient way to explore pathway
components that were identified in this study.

Table 2: Most highly expressed genes predicted to originate from the host genome2

Contigs # of reads (%) Annotation Accession SwissProt Species E-value
Contig777 259 (2.5) Elongation factor 2 P05197 Rattus norvegicus 0
Contigb42b 203 (2.0) Elongation factor |-alpha P29520 Bombyx mori 0
Contig643< 181 (1.8) Polyadenylate-binding protein | P11940 Homo sapiens le-177
Contig785¢ 178 (1.7) Polyadenylate-binding protein 4 Q13310 Homo sapiens 8e-30
Contig248 113 (1.1) Collagen alpha-2(l) chain Q01149 Mus musculus 6e-41
Contig824d 110 (I.1) Apolipophorins Q9U943 Locusta migratoria 2e-33
Contigl74¢ 83 (0.8) no_hits_found - - -
Contig514 79 (0.8) Catalase P04040 Homo sapiens 0
Contigl015b 55 (0.5) Elongation factor |-alpha P29520 Bombyx mori le-125
Contig950 51 (0.5) Collagen alpha-I(ll) chain Q91717 Xenopus laevis 2e-50
Contig262 50 (0.5) no_hits_found - - -
Contigé 44 (0.4) no_hits_found - - -
Contig651 43 (0.4) Adenosylhomocysteinase P27604 Caenorhabditis elegans 0
Contigl051f 42 (0.4) CUB and zona pellucida-like domain-containing 86UP6 Homo sapiens 3e-23

protein |
Contigd25 41 (0.4) Peroxidasin homolog Q92626 Homo sapiens 4e-88
aBLASTx (E-value cutoff: |e-5) search in SwissProt (as posted on 08/01/2008). Contig numbering is according to AiptasiaBase_vl.
b Contigs 642 and 1015 are likely to originate from the same transcript.
¢ Contigs 643 and 785 are likely to originate from the same transcript.
dBest BLAST search hit (with annotation) in nr: von Willebrand factor-like protein (Anthopleura elegantissima) [GenBank:DQ309533].
e Sequencing error artifact.
fBest BLAST search hit (with annotation) in nr: mesoglein variant | (Aurelia aurita) [GenBank:EF093532].
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Analysis of the most highly abundant transcripts

We identified the contigs containing the greatest numbers
of ESTs, which we used as a proxy for the most abundant
transcripts. Although the numbers of ESTs in contigs that
are predicted to originate from Symbiodinium were too low
to be analyzed (data not shown), many of the most abun-
dant host-derived transcripts represented genes that are
involved in the processes of protein biosynthesis, extracel-
lular-matrix formation, and oxidative-stress response
(Table 2).

Kuo et al. (2004) reported that the most highly expressed
gene in symbiotic A. pulchella was ferritin (11.7%),
whereas we found only 4 ESTs (0.04%) that represented
this gene. Although differences in the preparations of the
cDNA libraries (e.g. insert size-selection) and sequencing
depths (474 vs. 10,285 ESTs) pose an obstacle for a direct
comparison, the discrepancy in the numbers of ferritin
transcripts appears to be noteworthy. In a recent study
that investigated the effect of increased temperature and
UV levels on the symbiotic anemone Anthopleura elegan-
tissima, Richier et al. (2008) observed a more than 17-fold
up-regulation of ferritin expression upon thermal stress,
but not UV stress [43]. Given this observation, it seems
possible that the anemones in the study by Kuo et al.
(2004) were under elevated thermal stress at the time of
sampling, which, taken together with the methodological
differences mentioned above, makes any further compar-
ative analyses unfeasible. This result has important impli-
cations, i.e., how culturing conditions of organisms as
well as methodological differences between studies may
have an impact on the transcriptome, and by extension,
the interpretation of gene expression analyses.

The highly abundant sequences with the highest uncer-
tainties for correct annotation (highest E-values), apolipo-
phorin and the CUB and zona pellucida-like domain-
containing protein 1, were further scrutinized by similar-
ity searches in additional databases. These searches
revealed that the best hit for CUB and zona pellucida-like
domain-containing protein 1 in the GenBank non-redun-
dant database (nr) was mesoglein, a protein that is pro-
posed to be a structural element of the extracellular matrix
of the mesoglea in the jellyfish Aurelia aurita [44]. The
sequence annotated as apolipophorin contains a von Wil-
lebrand factor type-D domain, and was reported to be
involved in forming lipoprotein particles that bind lipo-
proteins and lipids [45]. Two other highly abundant
sequences had no homologs among previously character-
ized proteins, suggesting that they are novel, and a third
contig with no BLASTx-hit was identified as an artifact due
to misassembled sequences. These results illustrate some
of the caveats to automated sequence assembly and anno-
tation and highlight the necessity for corroboration after

http://www.biomedcentral.com/1471-2164/10/258

automated sequence processing when focusing on single
genes or groups of genes of interest.

Candidate genes with potential relevance to cnidarian-
dinoflagellate symbioses

We generated a candidate gene list of groups containing
UniSeqs that are likely to be of relevance to cnidarian-
dinoflagellate symbioses (Table 3). Among these, the cel-
lular antioxidant-response system could be most compre-
hensively reconstructed (see below). Genes related to the
innate immune system and sugar-binding proteins gave
rise to a partial gene inventory (Fig. 1; Table 3). Other
genes that are likely to play a role in the cellular events sur-
rounding the breakdown of symbiosis (exocytosis, host-
cell detachment, apoptosis and/or autophagy [46-52])
were also identified.

Stress-induced photoinhibition and damage to algal pho-
tosystem II are thought to be responsible for an increased
production of reactive oxygen species [53,54] and conse-
quently, diffusion of hydrogen peroxide (H,0,) through
the membranes into the host cells [55]. The detoxification
of H,0, requires the activity of catalase or other peroxi-
dases. Superoxide dismutase (SOD), which catalyzes the
reduction of superoxide to H,0,, as well as glutathione
peroxidase (GPx), which uses glutathione to detoxify
H,0,, were both not found among the sequenced ESTs.
One possibility is that the abundance of SOD transcripts
in host cells was low, and the generation of superoxide
spatially limited (inside the chloroplasts of Symbiodin-
ium). In this case, superoxide may have been efficiently
eliminated within the Symbiodinium cells, while excess
H,0, that was not detoxified (e.g., by Symbiodinium ascor-
bate peroxidase), could have diffused into the host cytosol
and been reduced to H,O and O, by catalase. Alterna-
tively, methodological factors such as insert-size selection
or general RNA processing may have prevented the detec-
tion of SOD. Other genes that had previously been
reported in the context of cnidarian-dinoflagellate symbi-
oses (Additional file 4: Genes that have been studied in
the context of cnidarian-dinoflagellate symbiosis, but not
found in this study) were also not detected, perhaps for
same reasons as discussed above for SOD.

Conclusion

By analyzing >10,000 high-quality ESTs and generating a
comprehensive database for the user community, we have
provided a foundation of transcriptomic resources for a
symbiotic anemone that is becoming an important model
system for studying coral-dinoflagellate symbioses. The
set of sequences identified constitutes a rich source of can-
didate genes that are likely to be involved in processes
related to the onset, maintenance, and breakdown of sym-
biosis. In this context, we were able to reconstruct the oxi-
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dative-stress response, which we also found to be
prominent during basal transcription. At the current
depth of sequencing, we have identified two problems,
namely (1) that some transcripts are represented by two
(or more) contigs and (2) that we lack information on
transcripts of low abundance. These issues will be
addressed in the near future by using 454 sequencing,
which, for example, has been successfully applied to
sequence the coral larval transcriptome of Acropora mille-
pora at 3 x coverage [56].

Methods

Generation and sequencing of a cDNA library from
Aiptasia pallida and its dinoflagellate symbiont

A clonal line of Aiptasia pallida (clone CC7, available
through the Pringle lab) hosting Symbiodinium of clade A
was established from a single tiny propagule in a popula-
tion obtained from Carolina Biological Supply (Burling-

ton, NC) and grown into an abundant stock. Given the
Symbiodinium clade harbored by this population, it is
likely that the Aiptasia individual originated from the Flor-
ida Keys lineage. Approximately 500 anemones of various
sizes were harvested from this stock under normal growth
conditions (~26°C; salinity, ~33 ppt; light, ~40 pmol m-2
s1 photosynthetic photon flux; 12-h light-dark cycle),
blotted to remove excess water, and immediately frozen in
liquid nitrogen. The anemones were then ground to a fine
powder under liquid nitrogen using a ceramic mortar and
pestle. The powder was weighed (~4 g) while still frozen
and mixed with a proportional volume (50 ml) of TRIzol
Reagent (Invitrogen, Carlsbad, CA); extraction was then
performed in accordance with the manufacturer's instruc-
tions yielding ~5 mg of total RNA. This RNA was sent to
Open Biosystems (Huntsville, AL), where it was tested for
quality; mRNA was then isolated using oligo(dT)-coated
magnetic particles (Seradyn, Indianapolis, IN), and cDNA
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Table 3: Potential symbiosis-related genes identified from the Aiptasia transcriptome

Name UniSeq SwissProt E-value blastx Notes
example Accession
Oxidative stress-lantioxidant activity-
related
I-Cys peroxiredoxin CCASI1731.gl 017433 3.00E-45 Thiol specific antioxidant
Catalase Contig514 P04040 0 Homolog to catalase
Peroxidase/catalase Contigl300 059651 1.00E-26 Catalase and peroxidase activity
Dual oxidase Contig42 Q9VOH2 8.00E-41 Anti-microbial oxidative burst
L-ascorbate peroxidase T, CCAS2499.bl1 Q42593 2.00E-18 Ascorbate peroxidase activity
chloroplastic
Glutathione reductase CCAS6616.g1 P30635 7.00E-30 Generation of reduced glutathione
Glutamate-cysteine ligase catalytic CCAS1277 gl P19468 3.00E-80
subunit
Glutathione synthetase Contig25 P35668 3.00E-60 Synthesis of glutathione
Glutathione transferase omega-like Contig320 Q04806 7.00E-21
Gamma-glutamyltranspeptidase Contig586 P18956 1.00E-42 Extracellular glutathione breakdown
Apoptosis-/Autophagy-related
Apoptosis inhibitor | Contig462 Q24306 1.00E-08
Apoptosis inhibitor 2 CCAS3883.bl P41454 3.00E-10
Apoptosis-inducing factor | CCAS6130.gl 095831 9.00E-57
Apoptosis-inducing factor 2 CCAS2159.¢2 QB8BUE4 2.00E-38
Caspase-3 CCAS2871.bl Q2PFV2 5.00E-11 Effector caspase
Caspase-8 Contig694 089110 3.00E-08 Initiator caspase
Caspase-10 CCAS4895.¢l Q92851 3.00E-09 Initiator caspase
Histone-lysine N-methyltransferase Contig595 Q03164 7.00E-31 Promotes PPPIR|5A-induced
HRX apoptosis
Death-associated protein kinase 3 Contigd72 088764 9.00E-10 Positive regulator of apoptosis
Large proline-rich protein BAT3 CCAS4314.bl 9Z1R2 1.00E-18 Role in ricin-induced apoptosis
Autophagy-related protein 7 CCAS4000.g! Q641Y5 1.00E-93
Autophagy-related protein 23 CCAS4265.¢gl Q6BHF8 5.00E-06
Damage-regulated autophagy CCAS6260.gl QS5EAKS 1.00E-12
modulator
Endo-, Exo-, Phagocytosis-related
Ankyrin-1 CCAS3968.gl P16157 2.00E-26 Attach membrane proteins to
cytoskeleton
AP-1 complex subunit beta- | CCAS4406.gl Q10567 5.00E-58 Clathrin-associated adaptor protein
complex |
Dynamin-1 CCAS5621.¢l P21575 7.00E-69 Vesicular trafficking processes
Exocyst complex component 6 Contigl 81 Q8TAGY 2.00E-21 Component of the exocyst complex
Formin-binding protein | CCAS4356.g1 Q96RU3 1.00E-09 Membrane tubulation
Intersectin-| CCAS6126.gl Q970R4 4.00E-12 Formation of clathrin-coated vesicles
SNARE-interacting protein KEULE Contig601 Q9C5X3 5.00E-15 Vesicle trafficking in cytokinesis
Ras-related protein ARA-5 Contigl 350 P28188 2.00E-30 Homolog to Rab7
Immunity-related
Complement C2 Contig732 3SYW2 2.00E-19
Complement C3 CCAS2220.b1 P23667 5.00E-10
Complement C5 CCAS2793.bl P06684 6.00E-11
Complement component C8 beta CCAS2550.¢1 P07358 3.00E-08
chain
NF-kappa-B inhibitor alpha CCAS395.¢l P25963 2.00E-21
Heat-shock-related
DnaJ homolog subfamily B member 4 ~ CCAS6247.gl Q9UDY4 7.00E-45
DnaJ homolog subfamily C member 10 Contig808 Q9IDC23 1.00E-27
DnaJ homolog subfamily C member 13 Contigl04 O75165 7.00E-07
DnaJ homolog subfamily C member 21  CCAS2838.gl Q6PGYS 3.00E-56
DnaJ homolog subfamily C member 7 Contigl270 9QYI13 8.00E-42
Heat shock 70 kDa protein Contig753 P41753 2.00E-62
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Table 3: Potential symbiosis-related genes identified from the Aiptasia transcriptome (Continued)

Heat shock 70 kDa protein 1B Contig573 Q27965 1.00E-170

Heat shock 70 kDa protein 2 Contig906 P18694 1.00E-12

Heat shock 70 kDa protein 4 CCAS4411.bl Q2TFEN9 2.00E-22

Heat shock 70 kDa protein C Contig926 P19208 6.00E-12

Heat shock cognate 71 kDa protein Contigl 309 Q71U34 0

Heat shock factor protein Contig401 P41154 1.00E-57

Heat shock protein 81-1 CCAS3866.¢gl P27323 9.00E-61

Heat shock protein 83 CCAS3866.bl P02828 5.00E-20

Heat shock protein 90 Contigl 047 044001 6.00E-52

Heat shock protein homolog SSEI CCAS4411.gl Q875V0 7.00E-44

Heat shock protein HSP 90-alpha Contig636 002705 4.00E-29

Heat shock protein HSP 90-beta Contig968 Q76LVI 1.00E-180
GlycanlLectin-related

Calreticulin CCAS6359.b1 P27798 1.00E-1 | Lectin

C-type lectin domain family 4 member  Contig203 PI10716 4.00E-20 Receptor; affinity for galactose/fucose

Ficolin-1 CCAS2736.b1 9IWTS8 7.00E-13 Binds GIcNAc

Ficolin-2 CCAS3003.bl Q29041 2.00E-58 Binds GIcNAc

Fucolectin-| Contigl 154 Q91931 2.00E-13 Binds fucose

Fucolectin-4 CCAS2219.¢l Q91928 3.00E-12 Binds fucose

was synthesized. Double-stranded ¢cDNA was size frac-
tionated to enrich for long reads, cloned into the vector
pExpress1 (Express Genomics, Frederick, MD), and elec-
troporated into E. coli strain DH10B. The resulting library
was determined to contain ~96% recombinants with an
average insert size of 1.95 kb. Sequencing was performed
on 96-well capillary sequencing platforms (ABI 3700) at
the DOE Joint Genome Institute (JGI, Walnut Creek, CA)
and at the Genome Core Facility at the University of Cali-
fornia, Merced, USA, CA.

Processing of ESTs and implementation of AiptasiaBase
Raw chromatogram files were used as input for the soft-
ware pipeline EST2uni [36], which was implemented on
an Ubuntu server (8.04 "Hardy Heron", Dual Intel Xeon
3.06 GHz) to generate the database named AiptasiaBase
[57]. During the pipeline processing, raw EST reads were
based-called by phred [37], and quality filtered and vector
trimmed by the software Lucy [38]; low-complexity
regions and repetitive elements were then removed by
seqclean [39] and RepeatMasker [58], respectively. To
remove unexpected vector sequences, seqclean addition-
ally screened the processed ESTs using NCBI's UniVec
database. All ESTs are available through GenBank acces-
sion numbers GH571982 - GH582266.

Clustering of processed ESTs was performed by cap3 [40]
with default settings resulting in unique sequences
(UniSegqs), for which open reading frames were predicted
by ESTScan [59]. Similar UniSeqs were found using
BLASTn [60], resulting in clusters of similar UniSeqs [60].
Short-sequence-repeat microsatellites and sequence varia-
tions were predicted by Sputnik [61] and local algorithms
[36], respectively. All UniSeqs were functionally anno-

tated by BLASTx searches [60] in protein databases nr
(GenBank - NCBI), TrEMBL, and SwissProt (Uniprot)
[62]; HMMER [63] searches in pfam [42]; and GO-term
associations (UniProt GOA, March 2008) [64]. The
number of unique genes was estimated by clustering all
reverse reads using the cap3 software with default settings.

BLAST-based prediction of UniSeq origin and KEGG
annotation

In order to predict whether an EST originated from Aipta-
sia pallida or Symbiodinium spp., we performed a best-
BLASTx-hit (BBH) approach (Additional file 2: Flow dia-
gram illustrating BBH approach). First, all UniSeqs were
BLASTx-searched (E-value cutoff: 1e-5) in a non-redun-
dant protein database (nr, GenBank, NCBI). If the BBH
was from a cnidarian or an alveolate species, the sequence
was predicted to originate from Aiptasia pallida or Symbiod-
inium spp., respectively, with high confidence. Next, if the
BBH was not from a cnidarian or alveolate species, we
compared the E-values for the BBHs from a search against
nr databases that were previously filtered for sequences
from cnidarian (582,480) or alveolate (468,072) species.
The organism for which the E-value was lower was
assigned to the corresponding UniSeq with medium con-
fidence. Finally, if the E-values for BBH searches in the cni-
darian and alveolate databases were equal, we compared
the percentage of identical amino acids in the sequence
alignments. As in the E-value-based approach, the organ-
ism with the higher percentage of identical amino acids
was assigned to the corresponding UniSeq (low confi-
dence). In addition to the annotations described above,
we used the Automatic Annotation Server provided by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) for
all UniSeqs using the single-directional best-hit option.
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