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To test the hypothesis that lecturing maximizes learning and
course performance, we metaanalyzed 225 studies that reported
data on examination scores or failure rates when comparing student
performance in undergraduate science, technology, engineer-
ing, and mathematics (STEM) courses under traditional lecturing
versus active learning. The effect sizes indicate that on average,
student performance on examinations and concept inventories in-
creased by 0.47 SDs under active learning (n = 158 studies), and
that the odds ratio for failing was 1.95 under traditional lecturing
(n = 67 studies). These results indicate that average examination
scores improved by about 6% in active learning sections, and that
students in classes with traditional lecturing were 1.5 times more
likely to fail than were students in classes with active learning.
Heterogeneity analyses indicated that both results hold across
the STEM disciplines, that active learning increases scores on con-
cept inventories more than on course examinations, and that ac-
tive learning appears effective across all class sizes—although the
greatest effects are in small (n ≤ 50) classes. Trim and fill analyses
and fail-safe n calculations suggest that the results are not due to
publication bias. The results also appear robust to variation in the
methodological rigor of the included studies, based on the quality
of controls over student quality and instructor identity. This is the
largest and most comprehensive metaanalysis of undergraduate
STEM education published to date. The results raise questions about
the continued use of traditional lecturing as a control in research
studies, and support active learning as the preferred, empirically
validated teaching practice in regular classrooms.
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Lecturing has been the predominant mode of instruction since
universities were founded in Western Europe over 900 y ago

(1). Although theories of learning that emphasize the need for
students to construct their own understanding have challenged
the theoretical underpinnings of the traditional, instructor-
focused, “teaching by telling” approach (2, 3), to date there has
been no quantitative analysis of how constructivist versus expo-
sition-centered methods impact student performance in un-
dergraduate courses across the science, technology, engineering,
and mathematics (STEM) disciplines. In the STEM classroom,
should we ask or should we tell?
Addressing this question is essential if scientists are committed

to teaching based on evidence rather than tradition (4). The
answer could also be part of a solution to the “pipeline problem”

that some countries are experiencing in STEM education: For
example, the observation that less than 40% of US students who
enter university with an interest in STEM, and just 20% of
STEM-interested underrepresented minority students, finish with
a STEM degree (5).
To test the efficacy of constructivist versus exposition-centered

course designs, we focused on the design of class sessions—as
opposed to laboratories, homework assignments, or other exer-
cises. More specifically, we compared the results of experiments
that documented student performance in courses with at least
some active learning versus traditional lecturing, by metaanalyzing

225 studies in the published and unpublished literature. The active
learning interventions varied widely in intensity and implementa-
tion, and included approaches as diverse as occasional group
problem-solving, worksheets or tutorials completed during class,
use of personal response systems with or without peer instruction,
and studio or workshop course designs. We followed guidelines for
best practice in quantitative reviews (SI Materials and Methods),
and evaluated student performance using two outcome variables:
(i) scores on identical or formally equivalent examinations, concept
inventories, or other assessments; or (ii) failure rates, usually
measured as the percentage of students receiving a D or F grade
or withdrawing from the course in question (DFW rate).
The analysis, then, focused on two related questions. Does ac-

tive learning boost examination scores? Does it lower failure rates?

Results
The overall mean effect size for performance on identical or
equivalent examinations, concept inventories, and other assess-
ments was a weighted standardized mean difference of 0.47 (Z =
9.781, P << 0.001)—meaning that on average, student perfor-
mance increased by just under half a SD with active learning
compared with lecturing. The overall mean effect size for failure
rate was an odds ratio of 1.95 (Z = 10.4, P << 0.001). This odds
ratio is equivalent to a risk ratio of 1.5, meaning that on average,
students in traditional lecture courses are 1.5 times more likely to
fail than students in courses with active learning. Average failure
rates were 21.8% under active learning but 33.8% under tradi-
tional lecturing—a difference that represents a 55% increase
(Fig. 1 and Fig. S1).

Significance

The President’s Council of Advisors on Science and Technology
has called for a 33% increase in the number of science, tech-
nology, engineering, and mathematics (STEM) bachelor’s degrees
completed per year and recommended adoption of empirically
validated teaching practices as critical to achieving that goal. The
studies analyzed here document that active learning leads to
increases in examination performance that would raise average
grades by a half a letter, and that failure rates under traditional
lecturing increase by 55% over the rates observed under active
learning. The analysis supports theory claiming that calls to in-
crease the number of students receiving STEM degrees could be
answered, at least in part, by abandoning traditional lecturing in
favor of active learning.
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Heterogeneity analyses indicated no statistically significant
variation among experiments based on the STEM discipline of
the course in question, with respect to either examination scores
(Fig. 2A; Q = 910.537, df = 7, P = 0.160) or failure rates (Fig. 2B;
Q = 11.73, df = 6, P = 0.068). In every discipline with more than
10 experiments that met the admission criteria for the meta-
analysis, average effect sizes were statistically significant for
either examination scores or failure rates or both (Fig. 2, Figs.
S2 and S3, and Tables S1A and S2A). Thus, the data indicate
that active learning increases student performance across the
STEM disciplines.
For the data on examinations and other assessments, a het-

erogeneity analysis indicated that average effect sizes were lower
when the outcome variable was an instructor-written course ex-
amination as opposed to performance on a concept inventory
(Fig. 3A and Table S1B; Q = 10.731, df = 1, P << 0.001). Al-
though student achievement was higher under active learning for
both types of assessments, we hypothesize that the difference in
gains for examinations versus concept inventories may be due to
the two types of assessments testing qualitatively different cogni-
tive skills. This explanation is consistent with previous research

indicating that active learning has a greater impact on student
mastery of higher- versus lower-level cognitive skills (6–9), and
the recognition that most concept inventories are designed to
diagnose known misconceptions, in contrast to course examinations
that emphasize content mastery or the ability to solve quantitative
problems (10). Most concept inventories also undergo testing for
validity, reliability, and readability.
Heterogeneity analyses indicated significant variation in terms

of course size, with active learning having the highest impact
on courses with 50 or fewer students (Fig. 3B and Table S1C;
Q = 6.726, df = 2, P = 0.035; Fig. S4). Effect sizes were sta-
tistically significant for all three categories of class size, how-
ever, indicating that active learning benefitted students in
medium (51–110 students) or large (>110 students) class sizes
as well.
When we metaanalyzed the data by course type and course

level, we found no statistically significant difference in active
learning’s effect size when comparing (i) courses for majors
versus nonmajors (Q = 0.045, df = 1, P = 0.883; Table S1D), or
(ii) introductory versus upper-division courses (Q = 0.046, df = 1,
P = 0.829; Tables S1E and S2D).

Fig. 1. Changes in failure rate. (A) Data plotted as percent change in failure rate in the same course, under active learning versus lecturing. The mean change
(12%) is indicated by the dashed vertical line. (B) Kernel density plots of failure rates under active learning and under lecturing. The mean failure rates under
each classroom type (21.8% and 33.8%) are shown by dashed vertical lines.

Fig. 2. Effect sizes by discipline. (A) Data on examination scores, concept inventories, or other assessments. (B) Data on failure rates. Numbers below data
points indicate the number of independent studies; horizontal lines are 95% confidence intervals.
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To evaluate how confident practitioners can be about these
conclusions, we performed two types of analyses to assess
whether the results were compromised by publication bias, i.e.,
the tendency for studies with low effect sizes to remain un-
published. We calculated fail-safe numbers indicating how many
missing studies with an effect size of 0 would have to be pub-
lished to reduce the overall effect sizes of 0.47 for examination
performance and 1.95 for failure rate to preset levels that would
be considered small or moderate—in this case, 0.20 and 1.1, re-
spectively. The fail-safe numbers were high: 114 studies on exam-
ination performance and 438 studies on failure rate (SI Materials
and Methods). Analyses of funnel plots (Fig. S5) also support a
lack of publication bias (SI Materials and Methods).
To assess criticisms that the literature on undergraduate

STEM education is difficult to interpret because of methodo-
logical shortcomings (e.g., ref. 11), we looked for heterogeneity
in effect sizes for the examination score data, based on whether
experiments did or did not meet our most stringent criteria for
student and instructor equivalence. We created four categories
to characterize the quality of the controls over student equivalence
in the active learning versus lecture treatments (SI Materials and
Methods), and found that there was no heterogeneity based on
methodological quality (Q = 2.097, df = 3, P = 0.553): Experi-
ments where students were assigned to treatments at random
produced results that were indistinguishable from three types
of quasirandomized designs (Table 1). Analyzing variation with
respect to controls over instructor identity also produced no
evidence of heterogeneity (Q = 0.007, df = 1, P = 0.934): More
poorly controlled studies, with different instructors in the two
treatment groups or with no data provided on instructor equiv-
alence, gave equivalent results to studies with identical or ran-
domized instructors in the two treatments (Table 1). Thus, the
overall effect size for examination data appears robust to variation
in the methodological rigor of published studies.

Discussion
The data reported here indicate that active learning increases
examination performance by just under half a SD and that lec-
turing increases failure rates by 55%. The heterogeneity analyses
indicate that (i) these increases in achievement hold across all of the
STEM disciplines and occur in all class sizes, course types, and
course levels; and (ii) active learning is particularly beneficial in
small classes and at increasing performance on concept inventories.
Although this is the largest and most comprehensive meta-

analysis of the undergraduate STEM education literature to
date, the weighted, grand mean effect size of 0.47 reported here
is almost identical to the weighted, grand-mean effect sizes of
0.50 and 0.51 published in earlier metaanalyses of how alter-
natives to traditional lecturing impact undergraduate course
performance in subsets of STEM disciplines (11, 12). Thus, our
results are consistent with previous work by other investigators.
The grand mean effect sizes reported here are subject to im-

portant qualifications, however. For example, because struggling
students are more likely to drop courses than high-achieving
students, the reductions in withdrawal rates under active learn-
ing that are documented here should depress average scores on
assessments—meaning that the effect size of 0.47 for examina-
tion and concept inventory scores may underestimate active
learning’s actual impact in the studies performed to date (SI
Materials and Methods). In contrast, it is not clear whether effect
sizes of this magnitude would be observed if active learning
approaches were to become universal. The instructors who
implemented active learning in these studies did so as volunteers.
It is an open question whether student performance would in-
crease as much if all faculty were required to implement active
learning approaches.
Assuming that other instructors implement active learning and

achieve the average effect size documented here, what would

Fig. 3. Heterogeneity analyses for data on examination scores, concept inventories, or other assessments. (A) By assessment type—concept inventories versus
examinations. (B) By class size. Numbers below data points indicate the number of independent studies; horizontal lines are 95% confidence intervals.

Table 1. Comparing effect sizes estimated from well-controlled versus less-well-controlled studies

95% confidence interval

Type of control n Hedges’s g SE Lower limit Upper limit

For student equivalence
Quasirandom—no data on student equivalence 39 0.467 0.102 0.268 0.666
Quasirandom—no statistical difference in prescores
on assessment used for effect size

51 0.534 0.089 0.359 0.709

Quasirandom—no statistical difference on metrics
of academic ability/preparedness

51 0.362 0.092 0.181 0.542

Randomized assignment or crossover design 16 0.514 0.098 0.322 0.706
For instructor equivalence

No data, or different instructors 59 0.472 0.081 0.313 0.631
Identical instructor, randomized assignment,
or ≥3 instructors in each treatment

99 0.492 0.071 0.347 0.580

8412 | www.pnas.org/cgi/doi/10.1073/pnas.1319030111 Freeman et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.1319030111.sfig05.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319030111/-/DCSupplemental/pnas.201319030SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1319030111


a shift of 0.47 SDs in examination and concept inventory scores
mean to their students?

i) Students performing in the 50th percentile of a class based on
traditional lecturing would, under active learning, move to
the 68th percentile of that class (13)—meaning that instead
of scoring better than 50% of the students in the class, the
same individual taught with active learning would score better
than 68% of the students being lectured to.

ii) According to an analysis of examination scores in three intro-
ductory STEM courses (SI Materials and Methods), a change of
0.47 SDs would produce an increase of about 6% in average
examination scores and would translate to a 0.3 point in-
crease in average final grade. On a letter-based system, medians
in the courses analyzed would rise from a B− to a B or from
a B to a B+.

The result for undergraduate STEM courses can also be
compared with the impact of educational interventions at the
precollege level. A recent review of educational interventions
in the K–12 literature reports a mean effect size of 0.39 when
impacts are measured with researcher-developed tests, analo-
gous to the examination scores analyzed here, and a mean effect
size of 0.24 for narrow-scope standardized tests, analogous to the
concept inventories analyzed here (14). Thus, the effect size of
active learning at the undergraduate level appears greater than
the effect sizes of educational innovations in the K–12 setting,
where effect sizes of 0.20 or even smaller may be considered of
policy interest (14).
There are also at least two ways to view an odds ratio of 1.95

for the risk of failing a STEM course:

i) If the experiments analyzed here had been conducted as ran-
domized controlled trials of medical interventions, they may
have been stopped for benefit—meaning that enrolling
patients in the control condition might be discontinued be-
cause the treatment being tested was clearly more beneficial.
For example, a recent analysis of 143 randomized controlled
medical trials that were stopped for benefit found that they
had a median relative risk of 0.52, with a range of 0.22 to 0.66
(15). In addition, best-practice directives suggest that data
management committees may allow such studies to stop for
benefit if interim analyses have large sample sizes and P val-
ues under 0.001 (16). Both criteria were met for failure rates
in the education studies we analyzed: The average relative
risk was 0.64 and the P value on the overall odds ratio
was << 0.001. Any analogy with biomedical trials is qual-
ified, however, by the lack of randomized designs in studies
that included data on failure rates.

ii) There were 29,300 students in the 67 lecturing treatments
with data on failure rates. Given that the raw failure rate in
this sample averaged 33.8% under traditional lecturing and
21.8% under active learning, the data suggest that 3,516 fewer
students would have failed these STEM courses under active
learning. Based on conservative assumptions (SI Materials and
Methods), this translates into over US$3,500,000 in saved tuition
dollars for the study population, had all students been exposed
to active learning. If active learning were implemented widely,
the total tuition dollars saved would be orders of magnitude
larger, given that there were 21 million students enrolled in
US colleges and universities alone in 2010, and that about a
third of these students intended to major in STEM fields as
entering freshmen (17, 18).

Finally, increased grades and fewer failures should make a
significant impact on the pipeline problem. For example, the
2012 President’s Council of Advisors on Science and Technology
report calls for an additional one million STEM majors in the
United States in the next decade—requiring a 33% increase

from the current annual total—and notes that simply increasing
the current STEM retention rate of 40% to 50% would meet
three-quarters of that goal (5). According to a recent cohort
study from the National Center for Education Statistics (19),
there are gaps of 0.5 and 0.4 in the STEM-course grade point
averages (GPAs) of first-year bachelor’s and associate’s degree
students, respectively, who end up leaving versus persisting in
STEM programs. A 0.3 “bump” in average grades with active
learning would get the “leavers” close to the current perfor-
mance level of “persisters.” Other analyses of students who leave
STEM majors indicate that increased passing rates, higher grades,
and increased engagement in courses all play a positive role in re-
tention (20–22).
In addition to providing evidence that active learning can

improve undergraduate STEM education, the results reported
here have important implications for future research. The studies
we metaanalyzed represent the first-generation of work on un-
dergraduate STEM education, where researchers contrasted a
diverse array of active learning approaches and intensities with
traditional lecturing. Given our results, it is reasonable to raise
concerns about the continued use of traditional lecturing as a
control in future experiments. Instead, it may be more pro-
ductive to focus on what we call “second-generation research”:
using advances in educational psychology and cognitive science
to inspire changes in course design (23, 24), then testing hy-
potheses about which type of active learning is most appropriate
and efficient for certain topics or student populations (25).
Second-generation research could also explore which aspects of
instructor behavior are most important for achieving the greatest
gains with active learning, and elaborate on recent work in-
dicating that underprepared and underrepresented students may
benefit most from active methods. In addition, it will be impor-
tant to address questions about the intensity of active learning:
Is more always better? Although the time devoted to active
learning was highly variable in the studies analyzed here, ranging
from just 10–15% of class time being devoted to clicker questions
to lecture-free “studio” environments, we were not able to evaluate
the relationship between the intensity (or type) of active learning
and student performance, due to lack of data (SI Materials
and Methods).
As research continues, we predict that course designs inspired

by second-generation studies will result in additional gains in
student achievement, especially when the types of active learning
interventions analyzed here—which focused solely on in-class
innovations—are combined with required exercises that are
completed outside of formal class sessions (26).
Finally, the data suggest that STEM instructors may begin to

question the continued use of traditional lecturing in everyday
practice, especially in light of recent work indicating that active
learning confers disproportionate benefits for STEM students
from disadvantaged backgrounds and for female students in
male-dominated fields (27, 28). Although traditional lecturing
has dominated undergraduate instruction for most of a millen-
nium and continues to have strong advocates (29), current evi-
dence suggests that a constructivist “ask, don’t tell” approach
may lead to strong increases in student performance—amplifying
recent calls from policy makers and researchers to support faculty
who are transforming their undergraduate STEM courses (5, 30).

Materials and Methods
To create a working definition of active learning, we collected written defi-
nitions from 338 audience members, before biology departmental seminars
on active learning, at universities throughout the United States and Canada.
We then coded elements in the responses to create the following con-
sensus definition:

Active learning engages students in the process of learning through
activities and/or discussion in class, as opposed to passively listening
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to an expert. It emphasizes higher-order thinking and often involves
group work. (See also ref. 31, p. iii).

Following Bligh (32), we defined traditional lecturing as “. . .continuous ex-
position by the teacher.” Under this definition, student activity was assumed
to be limited to taking notes and/or asking occasional and unprompted
questions of the instructor.

Literature Search. We searched the gray literature, primarily in the form of
unpublished dissertations and conference proceedings, in addition to peer-
reviewed sources (33, 34) for studies that compared student performance
in undergraduate STEM courses under traditional lecturing versus active
learning. We used four approaches (35) to find papers for consideration:
hand-searching every issue in 55 STEM education journals from June 1, 1998
to January 1, 2010 (Table S3), searching seven online databases using an
array of terms, mining reviews and bibliographies (SI Materials and Methods),
and “snowballing” from references in papers admitted to the study (SI
Materials and Methods). We had no starting time limit for admission to
the study; the ending cutoff for consideration was completion or publication
before January 1, 2010.

Criteria for Admission. As recommended (36), the criteria for admission to the
coding and final data analysis phases of the study were established at the
onset of the work and were not altered. We coded studies that (i) contrasted
traditional lecturing with any active learning intervention, with total class
time devoted to each approach not differing by more than 30 min/wk; (ii)
occurred in the context of a regularly scheduled course for undergraduates;
(iii) were largely or solely limited to changes in the conduct of the regularly
scheduled class or recitation sessions; (iv) involved a course in astronomy,
biology, chemistry, computer science, engineering, geology, mathematics,
natural resources or environmental science, nutrition or food science,
physics, psychology, or statistics; and (v) included data on some aspect of
student academic performance.

Note that criterion i yielded papers representing a wide array of active
learning activities, including vaguely defined “cooperative group activities
in class,” in-class worksheets, clickers, problem-based learning (PBL), and
studio classrooms, with intensities ranging from 10% to 100% of class time
(SI Materials and Methods). Thus, this study’s intent was to evaluate the
average effect of any active learning type and intensity contrasted with
traditional lecturing.

The literature search yielded 642 papers that appeared to meet these five
criteria and were subsequently coded by at least one of the authors.

Coding. All 642 papers were coded by one of the authors (S.F.) and 398 were
coded independently by at least one other member of the author team (M.M.,
M.S., M.P.W., N.O., or H.J.). The 244 “easy rejects”were excluded from the study
after the initial coder (S.F.) determined that they clearly did not meet one or
more of the five criteria for admission; a post hoc analysis suggested that the
easy rejects were justified (SI Materials and Methods).

The two coders met to review each of the remaining 398 papers and reach
consensus (37, 38) on

i) The five criteria listed above for admission to the study;
ii) Examination equivalence—meaning that the assessment given to stu-

dents in the lecturing and active learning treatment groups had to be
identical, equivalent as judged by at least one third-party observer
recruited by the authors of the study in question but blind to the hy-
pothesis being tested, or comprising questions drawn at random from
a common test bank;

iii) Student equivalence—specifically whether the experiment was based on
randomization or quasirandomization among treatments and, if quasir-
andom, whether students in the lecture and active learning treatments
were statistically indistinguishable in terms of (a) prior general academic
performance (usually measured by college GPA at the time of entering
the course, Scholastic Aptitude Test, or American College Testing scores),
or (b) pretests directly relevant to the topic in question;

iv) Instructor equivalence—meaning whether the instructors in the lecture
and active learning treatments were identical, randomly assigned, or
consisted of a group of three or more in each treatment; and

v) Data that could be used for computing an effect size.

To reduce or eliminate pseudoreplication, the coders also annotated the
effect size data using preestablished criteria to identify and report effect
sizes only from studies that represented independent courses and pop-
ulations reported. If the data reported were from iterations of the same
course at the same institution, we combined data recorded for more than

one control and/or treatment group from the same experiment. We also
combined data from multiple outcomes from the same study (e.g., a series
of equivalent midterm examinations) (SI Materials and Methods). Coders
also extracted data on class size, course type, course level, and type of active
learning, when available.

Criteria iii and iv were meant to assess methodological quality in the final
datasets, which comprised 158 independent comparisons with data on stu-
dent examination performance and 67 independent comparisons with data
on failure rates. The data analyzed and references to the corresponding
papers are archived in Table S4.

Data Analysis. Before analyzing the data, we inspected the distribution of
class sizes in the study and binned this variable as small, medium, and large
(SI Materials and Methods). We also used established protocols (38, 39) to
combine data from multiple treatments/controls and/or data from multiple
outcomes, and thus produce a single pairwise comparison from each in-
dependent course and student population in the study (SI Materials and
Methods).

The data we analyzed came from two types of studies: (i) randomized
trials, where each student was randomly placed in a treatment; and (ii)
quasirandom designs where students self-sorted into classes, blind to the
treatment at the time of registering for the class. It is important to note that
in the quasirandom experiments, students were assigned to treatment as
a group, meaning that they are not statistically independent samples. This
leads to statistical problems: The number of independent data points in each
treatment is not equal to the number of students (40). The element of
nonindependence in quasirandom designs can cause variance calculations to
underestimate the actual variance, leading to overestimates for significance
levels and for the weight that each study is assigned (41). To correct for this
element of nonindependence in quasirandom studies, we used a cluster
adjustment calculator in Microsoft Excel based on methods developed by
Hedges (40) and implemented in several recent metaanalyses (42, 43).
Adjusting for clustering in our data required an estimate of the intraclass
correlation coefficient (ICC). None of our studies reported ICCs, however,
and to our knowledge, no studies have reported an ICC in college-level STEM
courses. Thus, to obtain an estimate for the ICC, we turned to the K–12
literature. A recent paper reviewed ICCs for academic achievement in
mathematics and reading for a national sample of K–12 students (44). We
used the mean ICC reported for mathematics (0.22) as a conservative es-
timate of the ICC in college-level STEM classrooms. Note that although the
cluster correction has a large influence on the variance for each study, it
does not influence the effect size point estimate substantially.

We computed effect sizes and conducted the metaanalysis in the Com-
prehensive Meta-Analysis software package (45). All reported P values are
two-tailed, unless noted.

We used a random effects model (46, 47) to compare effect sizes. The
random effect size model was appropriate because conditions that could
affect learning gains varied among studies in the analysis, including the (i)
type (e.g., PBL versus clickers), intensity (percentage of class time devoted to
constructivist activities), and implementation (e.g., graded or ungraded) of
active learning; (ii) student population; (iii) course level and discipline; and
(iv) type, cognitive level, and timing—relative to the active learning exercise—
of examinations or other assessments.

We calculated effect sizes as (i) the weighted standardized mean differ-
ence as Hedges’ g (48) for data on examination scores, and (ii) the log-odds
for data on failure rates. For ease of interpretation, we then converted log-
odds values to odds ratio, risk ratio, or relative risk (49).

To evaluate the influence of publication bias on the results, we assessed
funnel plots visually (50) and statistically (51), applied Duval and Tweedie’s
trim and fill method (51), and calculated fail-safe Ns (45).

Additional Results. We did not insist that assessments be identical or formally
equivalent if studies reported only data on failure rates. To evaluate the
hypothesis that differences in failure rates recorded under traditional lec-
turing and active learning were due to changes in the difficulty of exami-
nations and other course assessments, we evaluated 11 studies where failure
rate data were based on comparisons in which most or all examination
questions were identical. The average odds ratio for these 11 studies was 1.97 ±
0.36 (SE)—almost exactly the effect size calculated from the entire dataset.

Although we did not metaanalyze the data using “vote-counting”
approaches, it is informative to note that of the studies reporting statistical
tests of examination score data, 94 reported significant gains under active
learning whereas only 41 did not (Table S4A).

Additional results from the analyses on publication bias are reported in
Supporting Information.
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The question we sought to answer was, “Does active learning
work better, in terms of improving student performance in un-
dergraduate science, technology, engineering, and mathematics
(STEM) courses, than traditional lecturing?” We evaluated per-
formance using two metrics: (i) scores on identical or formally
equivalent examinations, concept inventories, or other assess-
ments, and (ii) failure rates—in most cases measured as the
percentage of Ds, Fs, and/or withdrawals. These were relevant
criteria for failure because students with a D, F, or W in a STEM
course are usually barred from receiving credit in the major.

SI Materials and Methods
Literature Search. Searching the unpublished or gray literature in
addition to peer-reviewed papers is recommended to mitigate the
file-drawer effect, i.e., a systematic bias against studies that may
have been conducted carefully but were not published because the
results failed to show statistical significance and/or had low effect
sizes (1, 2).
We had no starting time limit for admission to the study; the

ending cutoff for consideration was completion or publication
before January 1, 2010. We used four approaches (3) to find
papers for consideration:

i) Hand searching: We read the titles of every research paper
published between June 1, 1998 and January 1, 2010 in the
55 journals listed in Table S4. If the titles indicated that one
of the five criteria for admission might be met, we also read
the abstract or summary. Papers that appeared to fulfill most
or all of the criteria were downloaded for later coding.

ii) Database searches: We searched Web of Science, Expanded
Academic Index, PubMed, Education Resources Information
Center, Compendex, ProQuest Science, and ProQuest Dis-
sertations and Theses. Each database was queried using the
following terms: active learning, audience response system,
case-based learning, clickers, collaborative learning, con-
structivism or constructivist learning, cooperative learning,
peer instruction, peer teaching, personal response device,
problem-based learning, reform calculus or calculus reform,
studio physics, traditional lecturing, workshop calculus, and
workshop physics. To reduce the number of irrelevant hits,
these terms were modified by “and student” and/or “and
lecture” in certain databases, and/or limited by selecting the
modifiers “education,” “math,” or “college students.”

iii) Mining reviews and bibliographies: We collected 33 bibliog-
raphies, qualitative reviews, and metaanalyses on undergrad-
uate STEM education and searched their citation lists for
papers relevant to this study (4–36).

iv) Snowballing: We searched the citation lists of all of the pub-
lications that we coded and checked for papers relevant to
this study.

We did not contact individual researchers for unpublished
work, and we did not include conference proceedings that in-
cluded only abstracts.

Criteria for Admission.Five criteria for admission to the study—for
coding by at least one researcher—are listed in Materials and
Methods, Criteria for Admission. These criteria were designed to
exclude:

� Experiments with volunteers or paid participants that occurred
outside of a normal course.

� Studies on the impact of laboratory exercises, homework, and
other assignments; take-home quizzes, supplementary instruc-

tion sessions; or other activities that were meant to be com-
pleted outside of normal class periods.

� Studies of student affect.

Coding. There were 244 studies classified as easy rejects and ex-
cluded from the study after the initial coder (S.F.) determined
that they clearly did not meet one or more of the five criteria for
admission. Of these, 23 were assigned to one of the second coders.
In 22 of 23 cases (96%), the second coder independently eval-
uated them as easy rejects; in the one case of conflict, a discussion
between the two coders resulted in rejection from the study. Thus,
it does not appear that a significant number of the 244 easy rejects
would actually be admitted if they were subjected to a second,
independent coding.
The two coders met to discuss each of the remaining 398 papers

(37, 38). The goal was to review and reach consensus on the five
issues itemized in Materials and Methods, Criteria for Admission.
On the issue of examination equivalence, it is important to note
that we rejected studies where authors either provided no data on
examination equivalence or stated that examinations were similar
or comparable without providing data to back the claim.
Coding: Student equivalence. To evaluate student equivalence,
coders checked whether the experimental design was based
on randomization or quasirandomization among treatments. In
quasirandomized designs, students register for lecturing or active
learning sections blind to the treatment type. However, students
may differ among sections or between years in terms of their
ability and/or preparation (39, 40). If the experiment was qua-
sirandom, coders noted whether the authors included statistical
tests on data concerning prior academic performance—usually
college grade point average (GPA) at the time of entering the
course, Scholastic Aptitude Test (SAT) or American College
Testing (ACT) scores, or pretests directly relevant to the topic in
question. Pretests were often a concept inventory; if prescores
were statistically indistinguishable, authors frequently reported
only postscores. In many cases, we used these postscores to
compute an effect size. Note that if a statistical test indicated
that students in the lecture section performed significantly worse
in terms of the preparation/ability metric analyzed, the study was
rejected from the metaanalysis.
This coding system allowed us to create four categories for the

quality of studies, in terms of controlling for student equivalence
in the active learning and lecture treatments. They are, in order
from least well controlled to best controlled, as follows:

� Quasirandom studies where authors provided no data on stu-
dent equivalence in terms of academic performance. Studies
were assigned to this category even if authors claimed that
students were indistinguishable but failed to provide a relevant
statistical test, or if they provided data showing that students
were equivalent in terms of sex, ethnicity, prior courses taken,
major field of study, or similar non–performance-related criteria.

� Quasirandom studies where data indicated no statistical dif-
ference on a pretest that was directly related to the topic
covered in the course and/or to the assessment used to calcu-
late the effect size.

� Quasirandom studies where data indicated no statistical dif-
ference on a reliable metric of overall academic preparedness/
ability, or where the metric was used as a covariate in the data
analysis. These data were usually SAT scores, ACT scores, or
college GPA. We did not accept high school GPA to qualify
studies for this category.
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� Randomized studies, where students were assigned at random
(e.g., by the registrar’s office) to the two classes being com-
pared, and cross-over designs where the same students expe-
rienced both active learning and traditional lecturing in the
same course.

Note that in the results on student equivalence given in Table
1A, the total sample size is 157 instead of 158. This is because
one study had combined outcomes that we used to calculate the
effect size (see Data analysis: Multiple controls/treatments and
multiple outcomes), and because the student controls on the two
outcomes used were different. As a result, this study could not
be assigned to one of the four categories and had to be dropped
from this heterogeneity analysis.
Coding: Identifying studies that were independent, as the unit of analysis.
During the coding phase, we took several steps to eliminate
pseudoreplication, which can artificially inflate sample sizes in
metaanalyses. The coding protocol called for computing a single
effect size from each published study, except in instances where
a single paper reported the results of studies that were conducted
in independent courses and populations (41). The exceptions
occurred when experiments reported in the same paper were on
the same campus but involved different courses with different
student populations (e.g., business calculus versus mathematics
for preservice teachers), or courses on different campuses (i.e.,
that the instructors and students involved did not overlap). In
cases where a single paper reported results from multiple courses
that may have been taken in sequence by at least some of the
same students, we recorded effect size data from only the initial
course in the sequence. Note that both coders had to agree that
the study populations were completely independent for multiple
effect sizes to be reported from the same paper.
Coding: Multiple controls/treatments and multiple outcomes. In cases
where papers included data from multiple treatments or multiple
controls—from the same course on the same campus, with or
without the same instructor(s)—we averaged the replicates to
compute a single effect size, using the approach described in
Data analysis: Combining multiple controls and/or treatments and
Data analysis: Combining multiple outcomes.
In cases where papers reported multiple outcome variables, the

protocol called for coders to choose the assessment that was (i)
most summative—for example, comprehensive final examina-
tions over midterm examinations or the percentage of students
receiving a D or F grade or withdrawing from the course in
question (DFW rate) instead of percentage of withdrawals, and/or
(ii) most comparable to other studies—for example, a widely
used concept inventory versus an instructor-written examination.
In cases where the assessments were determined to be equiv-
alent—e.g., four hour-long examinations, over the course of a
semester—the coders recorded all of the relevant data. We also
combined outcomes in cases where summative examination
scores (e.g., from a comprehensive final) as well as a concept
inventory scores were reported. When coding was complete,
we combined data from multiple outcomes to produce a single
effect size, using the approaches described in Data analysis:
Combining multiple outcomes.
Coding: Missing data. A total of 91 papers were judged to be ad-
missible by both coders but lacked some or all of the data required
to compute an effect size. In most cases, the missing data were
SDs and/or sample sizes. We wrote to every author on all 91
papers for whom we could find an e-mail address, requesting the
missing data. If we did not receive a response within 4 wk, we
dropped the paper from the study. Via follow-up correspondence,
we were able to obtain missing data for 19 of the 91 studies.
Coding: Categorizing class sizes.We coded class size as a continuous
variable in all papers where it was mentioned. In cases where the
authors reported a range of class sizes, we used themidpoint value
in the range. To create class size categories, we made a histogram

of the class size distribution, after coding was complete. Our
interpretation of this distribution, shown in Fig. S4, was that class
sizes fell into three natural groupings: classes with 50 or fewer
students, classes of more than 50 up to 110, and classes with more
than 110. We designated these as small, medium, and large
classes, respectively.

Data Analysis. Data on examination or concept inventory per-
formance were continuous and were reported either as means,
SDs, and sample sizes for each treatment group, or as the value
and df of Student’s t. We used these data to compute an effect
size from each study as the standardized mean difference weighted
by the inverse of the pooled variance, with the correction for
clustering in quasirandom studies explained in the Materials and
Methods, Data Analysis, and with Hedges’ correction for small
sample sizes (42). Thus, effect sizes for examination-points data
are in units of SDs. Effect size calculations, heterogeneity anal-
yses, and publication bias analyses were done in the Compre-
hensive Meta-Analysis software package; the cluster correction
was done in a Microsoft Excel program based on methods
developed by Hedges (see Materials and Methods, Data Analysis).
Data on failure rates are dichotomous and were reported as the

percentage of withdrawals/drops, Ds, Fs, Ds and Fs, DFWs, or
students progressing to subsequent courses. We used the odds
ratio to compute an effect size for failure rates (43).
It is important to note that papers reporting anything other

than DFW—for example, only Ds and Fs or only withdrawals—
may underreport the actual overall “raw” failure rate, as it is
typical for D and F grades as well as withdrawals to prevent
students from getting course credit toward a STEM major and
progressing to subsequent courses. However, because experi-
ments admitted to the study had to have the same metric for
failing a traditional lecture section and an active learning section,
the contrast in failure rate should be consistent across metrics.
As a result, the model-based estimate of the change in per-
centage of students failing should accurately capture the dif-
ferences observed across different metrics of failure.
The independent studies analyzed in the experiment and the

categories used in heterogeneity analyses are identified in Table
S4, along with the effect size and associated data from each study
analyzed here. Forest plots showing the effect sizes from all of
the experiments in the study, organized by discipline, are pro-
vided in Fig. S2 for data on examination scores, concept in-
ventories, and other assessments, and in Fig. S3 for failure rate
data. Note that due to small sample sizes or in keeping with
common departmental organizations, we combined astronomy
with physics, statistics with mathematics, and natural resources/
nutrition with biology.
Data analysis: Combining multiple controls and/or treatments. Some
studies reported multiple control and/or experimental treatments
for the same course, meaning that data were reported from more
than one section within or across terms/years. In these instances
we combined groups (e.g., all of the control terms) to create a
single pair-wise comparison (38). For achievement data this involved
creating a pooled mean, sample size, and SD. For the dichotomous
data on failure rates, we simply summed the sample size and the
number of students in each category to create a single group.
Data analysis: Combining multiple outcomes. When studies had mul-
tiple outcomes from the same set of students, and when the
outcomes were equivalent—in terms of how summative they
were or how widespread the use of the assessment was—
we computed a summary effect size that combined all of the
equivalent outcomes (44). In doing so, we assumed that the
correlation between different outcomes within a comparison was
1, because the same students were sampled for each outcome.
This is a conservative measure, leading to a less precise estimate
of the summary effect, as the actual correlation between outcomes
is likely lower than 1.
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Because we combined multiple outcomes when they were
judged to be equivalent in terms of measuring student-learning
gains, each independent study was represented by one effect size
in the metaanalysis; 28% of the studies analyzed here had mul-
tiple outcomes that we combined to estimate a single effect size.

Discussion/Data Interpretation. To estimate how much average
course grades would change if examination scores increased by
0.47 SDs in a STEM course, we obtained data on SDs for
examinations in the courses in the introductory biology, chem-
istry, and physics sequences for majors at the University of
Washington (UW). We then calculated how many more total
examination points students would receive, on average, with an
increase of 0.47 SDs, and compared this increase to the number of
points needed to raise a final grade by 0.1 on the 4-point, decimal-
based system used at this institution. Average or typical SDs on
100-point examinations were 12.5 in biology, 17.5 in chemistry,
and 18 in physics. An increase of 0.47 SDs would raise total
examination points by about 23 in biology, 28.7 in chemistry, and
51 in physics, and raise final grades an average of 0.30 in biology,
0.28 in chemistry, and 0.34 in physics. In a letter-based grading
system, these increases would move course medians or averages
from a B− to a B in biology and chemistry, and from a B to a B+
in physics.
Our estimate of US$3,500,000 in lost tuition and course fees

was based on an analysis of income from introductory biology
courses at UW. Tuition and fees at this institution are about
average for its peer comparison group of 10 other large US public
universities. At UW, each course in the introductory biology
sequence represents one-third of a normal course load in a term.
Based on tuition rates per credit hour for the 2012–2013 academic
year, published percentages of students receiving full financial
aid and students paying in-state versus out-of-state tuition, we
estimated that an average student pays $1,000 in tuition and fees
per five-credit STEM course. The resulting estimated total of US
$5,000,000 in lost tuition and fees due to failure would be much
higher if all of the studies analyzed here included DFWs, or
if the estimate were based on tuition at private institutions. It
would be lower, however, if it were based on courses that lack
laboratory sessions and/or are awarded fewer credit hours.

Additional Results. The data on failure rate reported in Fig. 4 can
also be visualized, on a study-by-study basis, as shown in Fig. S1.
Assessing publication bias. Publication bias may be the most serious
threat to the validity of a metaanalysis. Specifically, it is possible
for a metaanalysis to report an inflated value for the overall effect
size because the literature search failed to discover studies with
low effect sizes (41). Several analyses support the hypothesis that
the so-called file-drawer effect is real: Studies with low effect
sizes or that failed to show statistical significance are less likely to
be published, and thus substantially harder for the metaanalyst
to find (2).
We performed two analyses to evaluate the impact of publi-

cation bias on this study: (i) assessing funnel plots and (ii) cal-
culating a fail-safe N.

Assessing funnel plots. Plots of effect sizes versus SE (or sample
size) are called funnel plots because in the absence of publication
bias, they should be symmetrical about the overall mean and flare
out at the bottom. The flare is due to increased variation in effect
size estimates in studies with a large SE (or small sample size).
Publication bias produces a marked asymmetry in a funnel plot—
a “bite” out of the lower left of the plot (45). Visual inspection of
the funnel plots for assessment and failure rate data indicates
some asymmetry in the data for scores, due to five data points
with unusually large effect sizes and/or SEs (Fig. S5A), but little-
to-no asymmetry in the data for failure rate (Fig. S5B).
Statistical analyses (46) are consistent with this conclusion—

indicating asymmetry in the funnel plot for assessment data but

no asymmetry in the funnel plot for failure rate data. Specifically,
both nonparametric and parametric tests indicate a statistically
significant association between effect size and SE for the
examination score data (Kendall’s Tau with continuity correc-
tion 0.11, one-tailed P = 0.02; Egger’s regression intercept 0.55,
one-tailed P = 0.00032) but no association for the failure rate
data (Kendall’s Tau with continuity correction 0.14, one-tailed
P = 0.10; Egger’s regression intercept −0.43, one-tailed P = 0.37).
However, Duval and Tweedie’s trim and fill method (46)

for adjusting for publication bias indicates that the degree of
asymmetry observed in this study has virtually no impact on the
estimates of mean overall effect size: Under trim and fill, the
random effects estimate for the standardized mean difference is
0.47 (95% confidence interval 0.37–0.56) for the assessment data
and an odds ratio of 1.94 (95% confidence interval 1.71–2.20) for
the failure rate data. A sensitivity analysis focusing on extreme
values for examination scores also failed to discern an effect (see
Other sensitivity analyses). Thus, there is no indication that pub-
lication bias has affected the effect size estimates reported here.

Calculating a fail-safe N. The fail-safe N is the number of studies
with effect size 0 that would have to be added to the study to
reduce the observed effect size to a predetermined value that
experts would consider inconsequential. Conservatively, we set
the inconsequential value to a standardized mean difference of
0.20—still considered a pedagogically significant effect size in
the K–12 literature (47)—for the examination score data and an
odds ratio of 1.1 for the failure rate data. Orwin’s fail-safe N is
114 for the assessment data and 438 for the failure rate data.
Like the trim and fill analyses, the large fail-safeNs suggest that

the effect sizes reported here are not inflated by publication bias.
To bring the effect sizes reported here down to values that might
be insignificant to students and instructors, there would have to
be an unreasonably large number of undetected studies with
0 effect.
Other sensitivity analyses: Assessing the influence of extreme values. The
funnel plots of examination and concept inventory data suggest
that there are several studies with extreme effect size values. To
quantify this impression, we calculated the lower fence and upper
fence for effect size values in the study, based on the interquartile
range. The interquartile range was 0.59, producing a lower fence
of −0.76 and an upper fence of 1.60. The two studies below the
lower fence and the 10 studies above the upper fence can be con-
sidered outlying values. To evaluate the impact of these outliers on
the metaanalysis, we recalculated the overall effect size with the 12
studies removed and found that it was 0.45, with a 95% confidence
interval bounded by 0.38 and 0.51, meaning that it was statistically
indistinguishable from the value computed with the outliers.
To investigate the outlying values further, we analyzed the

characteristics of each study that generated an extreme value.
Both of the outliers with low effect sizes were from studies that
tested problem-based learning (PBL) as an active learning tech-
nique but involved extremely small sample sizes (totals of 16
and 25 students). The outliers with large effect sizes tested PBL,
flipped classrooms with in-class activities, studio models, peer
instruction, or vaguely defined interactive engagement with large
numbers of students participating. One unifying feature of these
high-effect-size studies appeared to be the high intensity of the
active learning component. The percentage of class time devoted
to active learning versus lecturing was reported as 25 (one study),
33 (one study), and 100 (seven studies), with one study missing
data. This observation suggests that varying the intensity of ac-
tive learning may be a productive experimental design for second-
generation, discipline-based education research.
To evaluate the failure-rate data’s sensitivity to values from

individual studies, we ran a one-study-removed analysis—meaning
that we recalculated the overall effect size, as the log-odds, with
each of the 67 studies removed. In the 67 recalculations, the
overall log-odds ranged from 1.49 to 1.60 with a mean of 1.55,
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suggesting that no one study had a disproportionate impact on
the overall estimate.
Heterogeneity analyses: Assessment data. Table S1 A–C provides
details on the heterogeneity analyses summarized in the Results–
specifically, metaanalyzing the assessment data by discipline,
assessment type (concept inventories versus examinations), and
class size.
In addition, we evaluated how coders characterized the active

learning interventions in the metaanalysis, and found that there
was no heterogeneity in effect sizes for examination data based on
the type of active learning intervention used (Q = 11.173, df = 7,
P = 0.131).
For several reasons, however, we urge further work on the

question of heterogeneity in effect sizes based on the type of
active learning intervention. The sample sizes in our analysis
are highly unbalanced, with some types of interventions (e.g., in-
teractive demonstrations and case histories) poorly represented.
In addition, a large suite of experiments was coded simply as
“worksheets” because authors referred to “cooperative in-class
exercises,” “group problem solving,” or “in-class tutorials.” Coding
was imprecise in these and many other cases because at present
there is no consensus about what various active learning types
actually entail in practice. For example, papers routinely use the
term “problem-based learning” for what one author considers
eight distinct course designs (48). Similar issues can arise in
implementation of general strategies such as “cooperative group
learning.” The problem was exacerbated because authors rarely
provided details on the intensity, duration, questioning level,
group composition, and tasks involved in active learning inter-
ventions. Further, few studies noted whether assigned exercises
had direct consequences for students—specifically, whether they
were ungraded or graded, graded for participation or correct-
ness, and for what percentage of total course grade.
We include the data on heterogeneity by intervention type here

only to urge further work on the issue, as discipline-based edu-

cation research begins its second generation. Progress will depend
on the research community creating an objective and repeatable
classification of intervention type—preferably grounded in the-
ory and empirical work from cognitive science and educational
psychology. To understand heterogeneity in effect sizes, we need
a reliable taxonomy of active learning types.
Heterogeneity analyses: Failure rate data. Table S2A provides details
on the heterogeneity analysis for failure rate data summarized
in the Results–specifically, metaanalyzing the failure rate data by
discipline. In addition, we metaanalyzed the failure rate data by
the type of failure metric used, class size, and course level.
There was evidence for heterogeneity based on the type of

failure metric used (Q = 27.60, df = 7, P < 0.0001; Table S2B),
although the result should be interpreted cautiously because five
of the categories are represented by tiny samples. Because it is
the most comprehensive and interpretable metric of failure, we
urge future investigators to use DFW as the sole metric for
quantifying failure rates in STEM courses. Given these caveats,
it is interesting to note that the analysis (Table S2B) indicates
that the log-odds of students withdrawing from a course are much
higher under lecturing. If these students were performing poorly
before withdrawing but would be retained in active learning sec-
tions, it suggests that the overall effect size of 0.47 on assessment
performance may be conservative, as noted in the Discussion.
The analysis based on class size just misses statistical sig-

nificance (Q = 5.91, df = 2, P = 0.052). The data in Table S2B
are consistent with the result for the examination scores (as-
sessment) data. Active learning appears to work slightly better in
classes with 50 or fewer students, but is effective in lowering
failure rates in any class size. As with the assessment data,
there is no impact on failure rate based on using active learning
in introductory versus upper division classes (Q = 0.71, df = 1,
P = 0.40).
The effect sizes and moderator variables for each independent

study analyzed here are provided in Table S4 (49–234).
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Fig. S1. Changes in failure rate. Data points on failure rates under traditional lecturing and active learning from the same study—and thus from the same
course and comparable student populations—are connected by a line. The overall means for each treatment are indicated by the green bars.

Fig. S1

Fig. S2. Forest plots for data on examinations, concept inventories, and other assessments, organized by discipline. Horizontal lines indicate 95% confidence
intervals; detailed data are given in Table S4A.

Fig. S2

Fig. S3. Forest plots for data on failure rates, organized by discipline. The dashed, red, vertical line indicates the odds ratio indicating no effect. Horizontal
lines indicate 95% confidence intervals; detailed data are given in Table S4B.

Fig. S3

Fig. S4. Distribution of class sizes in the study.

Fig. S4

Fig. S5. Funnel plots for evaluating publication bias. (A) Funnel plot for examination score data (n = 160). (B) Funnel plot for failure rate data (n = 67). Note
that the log odds ratio is plotted here.

Fig. S5

Other Supporting Information Files

Table S1 (DOCX)
Table S2 (DOCX)
Table S3 (DOCX)
Table S4 (DOCX)
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