
Curriculum 2013 Knowledge Units Pertaining to PDC

KA KU Tier Level NumberPDC Learning Outcome

AR
Assembly level machine
organization 2 Familiarity 2 p

Describe how an instruction is executed in a classical von Neumann machine, with
extensions for threads, multiprocessor synchronization, and SIMD execution

AR
Assembly level machine
organization 2 Familiarity 3 p

Describe instruction level parallelism and hazards, and how they are managed in
typical processor pipelines

AR
Digital logic and digital
systems 2 Familiarity 2 p

Comprehend the trend of modern computer architectures towards multi-core and
that parallelism is inherent in all hardware systems

AR
Digital logic and digital
systems 2 Familiarity 3 p

Explain the implications of the "power wall" in terms of further processor
performance improvements and the drive towards harnessing parallelism

AR
Functional organization

3 Familiarity 3 p
Explain basic instruction level parallelism using pipelining and the major hazards
that may occur

AR
Interfacing and
communication 2 Familiarity 4 d

Compare common network organizations, such as ethernet/bus, ring, switched vs.
routed

AR
Multiprocessing and
alternative architectures 3 Familiarity 3 d

Explain the concept of interconnection networks and characterize different
approaches

AR
Multiprocessing and
alternative architectures 3 Familiarity 5 d

Describe the differences between memory backplane, processor memory
interconnect, and remote memory via networks

AR
Multiprocessing and
alternative architectures 3 Familiarity 1 p

Discuss the concept of parallel processing beyond the classical von Neumann model

AR
Multiprocessing and
alternative architectures 3 Familiarity 2 p

Describe alternative architectures such as SIMD and MIMD

AR
Multiprocessing and
alternative architectures 3 Familiarity 4 p

Discuss the special concerns that multiprocessing systems present with respect to
memory management and describe how these are addressed

AR

Performance
enhancements

3 Familiarity 5 p

Discuss the performance advantages that multithreading offered in an architecture
along with the factors that make it difficult to derive maximum benefits from this
approach

CN Processing 3 Familiarity 9 p Describe the levels of parallelism including task, data, and event parallelism.

CN
Processing

3 Assessment10 p
Compare and contrast parallel programming paradigms recognizing the strengths
and weaknesses of each.

CN Processing 3 Usage 12 p Design, code, test and debug programs for a parallel computation.

GV
Basic Rendering

3 Familiarity 2 p
Describe the basic graphics pipeline and how forward and backward rendering
factor in this.

HC
Collaboration and
communication 3 Familiarity 1 d

Describe the differences between synchronous and asynchronous communication

IAS
Defensive Programming

1 Usage 4 p
Demonstrate using a high-level programming language how to prevent a race
condition from occurring and how to handle an exception

IAS Network Security 2 Familiarity 1 d Describe the different categories of network threats and attacks

IAS
Network Security

2 Familiarity 3 d
Describe virtues and limitations of security technologies at each layer of the
network stack

Curriculum 2013 Knowledge Units Pertaining to PDC

IAS
Security Policy and
Governance 3 Familiarity 7 d

Understand the risks and benefits of outsourcing to the cloud

IAS
Web Security

3 Familiarity 1 d
Understand the browser security model including same-origin policy and threat
models in web security

IAS

Web Security

3 Familiarity 2 d

Understand the concept of web sessions, secure communication channels such as
TLS and importance of secure certificates, authentication including single sign-on
such as OAuth and SAML

IAS
Web Security

3 Usage 3 d
Understand common types of vulnerabilities and attacks in web applications and
defenses against them.

IAS Web Security 3 Usage 4 d Understand how to use client-side security capabilities
IAS Web Security 3 Usage 5 d Understand how to use server-side security tools.

IM
Distributed Databases

3 Familiarity 1 d
Explain the techniques used for data fragmentation, replication, and allocation
during the distributed database design process

IM
Distributed Databases

3 Assessment 2 d
Evaluate simple strategies for executing a distributed query to select the strategy
that minimizes the amount of data transfer

IM
Distributed Databases

3 Familiarity 3 d
Explain how the two-phase commit protocol is used to deal with committing a
transaction that accesses databases stored on multiple nodes

IM
Distributed Databases

3 Familiarity 4 d
Describe distributed concurrency control based on the distinguished copy
techniques and the voting method

IM Distributed Databases 3 Familiarity 5 d Describe the three levels of software in the client-server model

IM
Information Management
Concepts 2 Familiarity 12 d

approaches that scale up to globally networked systems

IM
Information Storage and
Retrieval 3 Usage 4 d

Perform Internet-based research

NC Introduction 1 Familiarity 1 d Articulate the organization of the Internet
NC Introduction 1 Familiarity 2 d List and define the appropriate network terminology
NC Mobility 2 Familiarity 2 d Describe how wireless networks support mobile users
NC Networked Applications 1 Usage 3 d Implement a simple client-server socket-based application
NC Reliable Data Delivery 2 Familiarity 1 d Describe the operation of reliable delivery protocols
NC Reliable Data Delivery 2 Usage 3 d Design and implement a simple reliable protocol
NC Resource Allocation 2 Familiarity 1 d Describe how resources can be allocated in a network
NC Resource Allocation 2 Familiarity 2 d Describe the congestion problem in a large network

OS
Concurrency

2 Usage 2 c
Demonstrate the potential run-time problems arising from the concurrent operation
of many separate tasks

OS
Concurrency

2 Familiarity 3 c
Summarize the range of mechanisms that can be employed at the operating system
level to realize concurrent systems and describe the benefits of each

OS
Concurrency

2 Familiarity 5 c
Summarize techniques for achieving synchronization in an operating system (e.g.,
describe how to implement a semaphore using OS primitives)

Curriculum 2013 Knowledge Units Pertaining to PDC

OS
Concurrency

2 Familiarity 6 c
Describe reasons for using interrupts, dispatching, and context switching to support
concurrency in an operating system

OS
Operating System
Principles 2 Familiarity 1 c

Describe the need for concurrency within the framework of an operating system

OS
Overview of Operating
Systems 1 Familiarity 4 d

Discuss networked, client-server, distributed operating systems and how they differ
from single user operating systems

PBD Web Platforms 3 Usage 1 d Design and Implement a simple web application

PBD
Web Platforms

3 Familiarity 4 d
Describe the differences between Software-as-a-Service and traditional software
products

PD Cloud Computing 3 Familiarity 1 d Discuss the importance of elasticity and resource management in cloud computing.

PD
Cloud Computing

3 Usage 4 d
Deploy an application that uses cloud infrastructure for computing and/or data
resources

PD
Cloud Computing

3 Familiarity 2 pd
Explain strategies to synchronize a common view of shared data across a collection
of devices

PD
Communication and
Coordination 1 Usage 1 p

Use mutual exclusion to avoid a given race condition

PD
Communication and
Coordination 2 Familiarity 2 c

Give an example of an ordering of accesses among concurrent activities that is not
sequentially consistent

PD
Communication and
Coordination 2 Usage 5 c

Write a program that correctly terminates when all of a set of concurrent tasks
have completed

PD
Communication and
Coordination 2 Usage 6 c

Use a properly synchronized queue to buffer data passed among activities

PD
Communication and
Coordination 2 Familiarity 7 c

Explain why checks for preconditions, and actions based on these checks, must
share the same unit of atomicity to be effective

PD
Communication and
Coordination 2 Usage 8 c

Write a test program that can reveal a concurrent programming error; for example,
missing an update when two activities both try to increment a variable

PD
Communication and
Coordination 2 Familiarity 9 c

Describe at least one design technique for avoiding liveness failures in programs
using multiple locks or semaphores

PD
Communication and
Coordination 2 Familiarity 10 c

Describe the relative merits of optimistic versus conservative concurrency control
under different rates of contention among updates

PD
Communication and
Coordination 2 Usage 3 d

Give an example of a scenario in which blocking message sends can deadlock

PD
Communication and
Coordination 2 Familiarity 4 d

Explain when and why multicast or event-based messaging can be preferable to
alternatives

PD
Communication and
Coordination 3 Usage 12 c

Use semaphores or condition variables to block threads until a necessary
precondition holds

PD Distributed Systems 3 Familiarity 1 d Distinguish network faults from other kinds of failures

PD
Distributed Systems

3 Familiarity 2 d
Explain why synchronization constructs such as simple locks are not useful in the
presence of distributed faults

Curriculum 2013 Knowledge Units Pertaining to PDC

PD
Distributed Systems

3 Usage 3 d
Give examples of problems for which consensus algorithms such as leader election
are required

PD

Distributed Systems

3 Usage 4 d

Write a program that performs any required marshalling and conversion into
message units, such as packets, to communicate interesting data between two
hosts

PD
Distributed Systems

3 Usage 5 d
Measure the observed throughput and response latency across hosts in a given
network

PD
Distributed Systems

3 Familiarity 6 d
Explain why no distributed system can be simultaneously consistent, available, and
partition tolerant

PD Distributed Systems 3 Usage 7 d Implement a simple server -- for example, a spell checking service

PD
Distributed Systems

3 Familiarity 8 d
Explain the tradeoffs among overhead, scalability, and fault tolerance when
choosing a stateful v. stateless design for a given service

PD

Distributed Systems

3 Familiarity 9 d

Describe the scalability challenges associated with a service growing to
accommodate many clients, as well as those associated with a service only
transiently having many clients

PD
Formal Models and
Semantics 3 Usage 1 c

Model a concurrent process using a formal model, such as pi-calculus

PD
Formal Models and
Semantics 3 Familiarity 2 c

Explain the characteristics of a particular formal parallel model

PD
Formal Models and
Semantics 3 Usage 3 c

Formally model a shared memory system to show if it is consistent

PD
Formal Models and
Semantics 3 Usage 4 c

Use a model to show progress guarantees in a parallel algorithm

PD
Formal Models and
Semantics 3 Usage 5 c

Use formal techniques to show that a parallel algorithm is correct with respect to a
safety or liveness property

PD
Formal Models and
Semantics 3 Usage 6 c

Decide if a specific execution is linearizable or not

PD

Parallel Algorithms,
Analysis, and
Programming 2 Usage 2 p

Compute the work and span, and determine the critical path with respect to a
parallel execution diagram

PD

Parallel Algorithms,
Analysis, and
Programming 2 Familiarity 3 p

Define “speed-up” and explain the notion of an algorithm’s scalability in this regard

PD

Parallel Algorithms,
Analysis, and
Programming 2 Usage 4 p

Identify independent tasks in a program that may be parallelized

PD

Parallel Algorithms,
Analysis, and
Programming 2 Familiarity 5 p

Characterize features of a workload that allow or prevent it from being naturally
parallelized

Curriculum 2013 Knowledge Units Pertaining to PDC

PD

Parallel Algorithms,
Analysis, and
Programming 2 Usage 6 p

Implement a parallel divide-and-conquer and/or graph algorithm and empirically
measure its performance relative to its sequential analog

PD

Parallel Algorithms,
Analysis, and
Programming 3 Familiarity 8 d

Provide an example of a problem that fits the producer-consumer paradigm

PD

Parallel Algorithms,
Analysis, and
Programming 3 Familiarity 10 d

Identify issues that arise in producer-consumer algorithms and mechanisms that
may be used for addressing them

PD

Parallel Algorithms,
Analysis, and
Programming 3 Familiarity 9 pd

Give examples of problems where pipelining would be an effective means of
parallelization

PD Parallel Architecture 1 Familiarity 1 d Explain the differences between shared and distributed memory
PD Parallel Architecture 2 Familiarity 2 p Describe the SMP architecture and note its key features
PD Parallel Architecture 2 Familiarity 3 p Characterize the kinds of tasks that are a natural match for SIMD machines
PD Parallel Architecture 3 Familiarity 6 d Describe the key features of different distributed system topologies
PD Parallel Architecture 3 Familiarity 5 p Describe the challenges in maintaining cache coherence
PD Parallel Architecture 3 Familiarity 4 pd Explain the features of each classification in Flynn’s taxonomy
PD Parallel Decomposition 1 Usage 1 p Explain why synchronization is necessary in a specific parallel program
PD Parallel Decomposition 2 Usage 2 p Write a correct and scalable parallel algorithm
PD Parallel Decomposition 2 Usage 3 p Parallelize an algorithm by applying task-based decomposition
PD Parallel Decomposition 2 Usage 4 p Parallelize an algorithm by applying data-parallel decomposition
PD Parallel Performance 3 Usage 1 p Calculate the implications of Amdahl’s law for a particular parallel algorithm
PD Parallel Performance 3 Usage 4 p Detect and correct an instance of false sharing
PD Parallel Performance 3 Familiarity 5 p Explain the impact of scheduling on parallel performance
PD Parallel Performance 3 Familiarity 7 p Explain the impact and trade-off related to power usage on parallel performance

PD
Parallel Performance

3 Familiarity 2 pd
Describe how data distribution/layout can affect an algorithm’s communication
costs

PD Parallel Performance 3 Usage 3 pd Detect and correct a load imbalance
PD Parallel Performance 3 Familiarity 6 pd Explain performance impacts of data locality

PD
Parallelism Fundamentals

1 Familiarity 3 p
Distinguish data races from higher level races

PL
Concurrency and
Parallelism 3 Usage 1 c

Write correct concurrent programs using multiple programming models.

PL
Concurrency and
Parallelism 3 Familiarity 2 p

Explain why programming languages do not guarantee sequential consistency in
the presence of data races and what programmers must do as a result.

SE
Software Verification
Validation 2 Familiarity 7 pd

Describe the issues and approaches to testing distributed and parallel systems.

Curriculum 2013 Knowledge Units Pertaining to PDC

SF

Computational Paradigms

1 Familiarity 3 p

Articulate the differences between single thread vs. multiple thread, single server
vs. multiple server models, motivated by real world examples (e.g., cooking
recipes, lines for multiple teller machines, couple shopping for food, wash-dry-fold,
etc.).

SF
Computational Paradigms

1 Usage 7 p
Write a simple sequential problem and a simple parallel version of the same
program.

SF
Computational Paradigms

1 Assessment 7 p
Evaluate performance of simple sequential and parallel versions of a program with
different problem sizes, and be able to describe the speed-ups achieved.

SF Evaluation 1 Familiarity 2 p Describe Amdahl’s law and discuss its limitations.

SF
Evaluation

1 Usage 3 p
Design and conduct a performance-oriented experiment, e.g., benchmark a parallel
program with different data sets in order to iteratively improve its performance.

SF
Parallelism

1 Familiarity 1 p
For a given program, distinguish between its sequential and parallel execution, and
the performance implications thereof.

SF

Parallelism

1 Familiarity 2 p

Demonstrate on an execution time line that parallelism events and operations can
take place simultaneously (i.e., at the same time). Explain how work can be
performed in less elapsed time if this can be exploited.

SF Parallelism 1 Familiarity 3 p Explain other uses of parallelism, such as for reliability/redundancy of execution.

SF
Parallelism

1 Familiarity 4 p
Define the differences between the concepts of Instruction Parallelism, Data
Parallelism, Thread Parallelism/Multitasking, Task/Request Parallelism.

SF

Parallelism

1 Usage 5 p

Write more than one parallel program (e.g., one simple parallel program in more
than one parallel programming paradigm; a simple parallel program that manages
shared resources through synchronization primitives; a simple parallel program that
performs simultaneous operation on partitioned data through task parallel (e.g.,
parallel search terms; a simple parallel program that performs step-by-step pipeline
processing through message passing).

SF
Parallelism

1 Assessment 6 p
Use performance tools to measure speed-up achieved by parallel programs in terms
of both problem size and number of resources.

SE Software Design 2 Familiarity 10 x

Given a high-level design, identify the software architecture by differentiating among
common software architectures such as 3-tier, pipe-and-filter, and client-server.

SE Software Design 3 Usage 20 x

Apply component-oriented approaches to the design of a range of software, such as
using components for concurrency and transactions, for reliable communication
services, for database interaction including services for remote query and database
management, or for secure communication and access.

SE Software Construction 3 Usage 8 x
Rewrite a simple program to remove common vulnerabilities, such as buffer overflows, integer
overflows and race conditions

