
csinparallel.org	

An	Overview	Of	
The	PDC	Landscape	
Joel	Adams	
Calvin	College	

csinparallel.org	

Overview	

Let’s	explore	two	related-but-different	areas:	
•  Shi=s	in	the	hardware	landscape	
– Distributed	compu@ng	
– Parallel	compu@ng	

•  Corresponding	changes	on	the	so=ware	side	
	

csinparallel.org	

Distributed	Hardware	Landscape	
•  Cloud	compu@ng	services:	
– Amazon’s	Elas@c	Compute	Cloud	(EC2)	
– Microso=’s	Azure	
– Google’s	App	Engine	
– …	

•  Devices	for	the	“Internet	of	Things”:	
–  Raspberry	PI	
–  Intel	Galileo	
– …	

csinparallel.org	

Distributed	Compu@ng:	Hardware	

csinparallel.org	

Distributed	Compu@ng:	Hardware	(2)	

Raspberry	PI	
-  ARM	1176	CPU	
-  VideoCore	GPU	
-  Linux	
-  $25	

Intel	Gallileo	
-  Quark	X1000	CPU	
-  Arduino	IDE	
-  ~$50	

csinparallel.org	

Parallel	Hardware	Landscape	
Parallel	Systems	

Shared	
Memory	

Distributed	
Memory	

Mul@core	 Accelerators	

GPUs	 Coprocessors	

Heterogeneous	
Systems	

Older	
Clusters	

Modern	
Super	

Computers	

Newer	
Clusters	

csinparallel.org	

History	/	Timeline	
Decade	 Parallel	Hardware	Pla<orms	 Memory	

1980s	
Vector	supercomputers	 Shared	
Mul@processors	(networked)	 Distributed	

1990s	
Cluster	supercomputers	 Distributed	
Internet	 Distributed	
Symmetric	mul@processors	 Shared	

2000s	
GPUs	 Shared	
Mul@core	processors	 Shared	

2010s	
Hybrid	supercomputers/clusters	 Both	
Coprocessors	(w.	vector	units)	 Shared	

csinparallel.org	

History	/	Timeline	(2)	
Decade	 Parallel	Hardware	Pla<orms	

1980s	
Vector	supercomputers	 Proprietary	
Mul@processors	(networked)	 Proprietary	

1990s	
Cluster	supercomputers	 MPI	
Internet	 Sockets,BOINC	
Symmetric	mul@processors	 Various	

2000s	
GPUs	 CUDA,OpenCL	
Mul@core	processors	 Various	

2010s	
Hybrid	systems	 Combina@ons	
Coprocessors	(w.	vector	units)	 Various	

csinparallel.org	

Today’s	So=ware	Landscape	

•  The	so=ware	generally	varies	with	the	
hardware	plaform	it	is	intended	to	run	on:	
– Distributed	memory	systems	
– Shared	memory	systems	

•  Vanilla	shared-memory	systems	
•  Shared-memory	systems	with	Accelerators	

– Manycore	GPUs	and/or	coprocessors	

– Heterogeneous	systems	
•  No	“one	size	fits	all”	so=ware	solu@on	(yet)	
•  Let’s	explore	these	one	at	a	@me…	

csinparallel.org	

Distributed	Memory	Systems	

Two	broad	categories;	both	use	standalone	
compute	nodes,	each	with	their	own	memory:	
•  Local-area	distributed-memory	systems	
– Nodes	are	connected	via	a	local	area	network	
(the	faster	the	beier)	

•  Wide-area	distributed-memory	systems	
– Nodes	are	connected	via	a	wide	area	network	
(such	as	the	Internet	–	compara@vely	slow)	

csinparallel.org	

Distributed	Memory	System	So=ware	
Local-area	dist-mem.	systems	use	mul4processing:	
•  Remote	processes	are	launched	on	compute	nodes	
•  The	message	passing	interface	(MPI)	is	the	industry	
standard	plaform	for	such	systems	
–  Implementa@ons	for	C,	C++,	Fortran,	Python,	…	
–  Generality:	Works	well	on	shared-memory	systems	too	

•  MapReduce	is	a	Google	plaform	for	reliably	solving	
some	kinds	of	distributed	problems	
–  Hadoop	is	an	open-source	version	of	MapReduce	
– WebMapReduce	is	a	browser-based	Hadoop	front	end	
developed	by	Dick	Brown	&	his	St.	Olaf	students	

csinparallel.org	

csinparallel.org	

Distributed	Mem.	System	So=ware	(2)	
For	wide-area	distributed-memory	systems:	
•  Remote	processes	communicate	via	sockets:	
–  Client-server	systems	are	most	common	
–  Peer	to	peer	systems	are	a	decentralized	alterna@ve…	

•  The	Berkeley	Open	Infrastructure	for	Network	
Compu@ng	(BOINC)	is	a	widely	used	plaform	for	
coordina@ng	distributed	compu@ng	tasks:	
–  SETI@Home,	Folding@Home,	LHC@Home,	…	

The	rela@ve	slowness	of	wide-area	communica@on	limits	
this	approach	to	embarrassingly	parallel	problems.	

csinparallel.org	

Shared	Memory	Systems	

Three	broad	categories:	
•  Vanilla	shared-memory	systems	
– Mul@core	/	Mul@socket	CPU-based	systems	
–  Cores	share	a	common	memory	

•  Accelerated	shared-memory	systems	
–  Vanilla	systems	plus	many-core	accelerator(s)	
(GPGPU,	Coprocessor)	

•  Heterogenous	systems:	CPU	+	Accelerator	
Most	shared-memory	systems	use	mul4threading	

csinparallel.org	

Vanilla	Shared	Mem.	So=ware	
Vanilla	shared-memory	systems	are	ubiquitous:	
•  Open	Mul@Processing	(OpenMP)	is	an	industry	
standard	for	mul@threading	
– Non-proprietary	open	standard	
– Mul@language	support	(C,	C++,	Fortran)	
–  Pragma-based	programming;	rela@vely	easy	

•  Language-based	mul@threading	op@ons:	
–  C	(pthreads),	C++11	(Boost),	C#	(.NET),	Java,	…	

•  Vendor-specific	(proprietary)	libraries/languages	
–  Intel’s	Thread	Building	Blocks	(TBB),	Google’s	Go,	…	

csinparallel.org	

iPhone	6:	dual-core	A8	chip	

iPad	3:	quad-core	A5X	chip	

csinparallel.org	

Vanilla	Shared	Mem.	So=ware	(2)	
Vanilla	shared-memory	systems	can	also	be	
programmed	via	message-passing:	
•  MPI	also	works	well	on	these	systems	
•  Some	languages	u@lize	message-passing	tasks	to	
avoid	mul@threading’s	race	condi4ons:	
–  Erlang,	Scala,	…	
–  Programs	wriien	in	these	languages	port	easily	to	
distributed-memory	systems	

Every	CS	undergraduate	student	should	learn	how	to	
program	vanilla	shared-memory	parallel	systems	
	

csinparallel.org	

Accelerated	Shared	Mem.	Systems	
So=ware	for	shared-memory	systems	with	
accelerators	varies	with	the	accelerator:	
•  General	Purpose	Graphics	Processing	Unit	
(GPGPU)	systems	
– Nvidia	
– AMD’s	ATI/Radeon	

•  Coprocessor	systems	
–  Intel’s	Xeon	Phi	(61	cores,	4	hw	threads/core),	
available	to	us	on	Intel’s	Manycore	Tes@ng	Lab	(MTL)	

–  Parallella’s	Epiphany	(16	cores)		

csinparallel.org	

Accelerators	

csinparallel.org	

Liile	Fe	(v4):	6	nodes	
-  Dual-core	Atom	
-  Nvidia	ION2	w/	16	CUDA	cores	
-  2	GB	RAM	
-  GigabitEthernet,	USB,	…	
-  Custom	Linux	distro	(BCCD)	
-  ~$2500	(but	free	at	“Buildouts”!)	

Accelerator	System:	Liile	Fe	

csinparallel.org	

Nvidia	Jetson	TK1	
-  Quad-core	ARM	A15	
-  Kepler	GPU	w/	192	CUDA	cores	
-  2	GB	RAM	
-  GigabitEthernet,	HDMI,	USB,	…	
-  Ubuntu	Linux	
-  ~$200	

Accelerator	Systems:	Small	

csinparallel.org	

Adapteva	Parallella	
-  Dual-core	ARM	A7	
-  16-64	core	Epiphany	Coprocessor	
-  1	GB	RAM	
-  Gigabit	Ethernet,	USB,	HDMI,	…	
-  Ubuntu	Linux	
-  ~$99	(but	free	via	university	program!)	

Accelerator	Systems:	Even	Smaller	

csinparallel.org	

Parallella	Cluster	

csinparallel.org	

Accelerated	Shared	Mem.	So=ware	
So=ware	for	shared-memory	systems	with	GPUs:	
•  Nvidia’s	Compute	Unified	Device	Architecture	(CUDA):	

+ Well	established;	extensive	examples/documenta@on	available	
-  Proprietary;	works	only	on	Nvidia	GPU	cores	

•  Open	Compute	Language	(OpenCL):	
+  Plaform	independent	open	standard	
+  Can	use	every	core	in	a	system	(Nvidia	or	not)	
–  Significantly	more	complicated	than	CUDA	
–  Fewer	examples/tutorials/documenta@on	available	

•  OpenACC	(Open	Accelera@on?):	
+  Pragmas	(a	la	OpenMP)	to	simplify	GPU	compu@ng	
–  Promising,	but	s@ll	in	development	

•  Intel’s	Array	Building	Blocks	(ArBB):	
+  C++	library	for	vectorized	parallel	compu@ng	
-  Proprietary;	C++	only	

csinparallel.org	

csinparallel.org	

Accelerated	Shared	Mem.	So=ware	(2)	

So=ware	for	shared-memory	systems	with	
coprocessors	(cluster	on	a	chip):	
•  MPI	
•  OpenMP	
•  OpenCL	
•  Intel’s	ArBB	
Coprocessors	are	fairly	new,	so	other	so=ware	
plaforms	for	them	will	likely	appear…	

csinparallel.org	

Heterogeneous	Systems	

Complica@ons:	
1.  Unicore	CPUs	are	nearly	ex@nct…	
– All	recent	clusters	have	mul@core	CPUs	

2.  Accelerators	can	be	added	to	cluster	nodes	
This	creates	lots	of	op@ons	for	heterogeneity:	
– Distributed	+	shared	memory	
– Distributed	+	shared	memory	+	GPUs	
– Distributed	+	shared	memory	+	coprocessors	

csinparallel.org	

Tianhe-2	

Tianhe-2	(Milky	way-2):	16,000	nodes	
-  Two	Xeon	8-core	CPUs	per	node	
-  Three	Xeon	Phi	Coprocessors	per	node	
-  3,120,000	cores	total	
-  64	GB	RAM	per	node	(1	PB	total)	
-  TH	Express-2	Interconnect	
-  Kylin	Linux	

csinparallel.org	

Heterog.	System	So=ware	Op@ons	
•  Distributed	+	shared	memory	
– MPI	(1	MPI	process/core)	
– MPI	+	OpenMP	(1	MPI	process/node)	
– MapReduce	(1	or	more	MR	process/node)	

•  Distributed	+	shared	memory	+	GPUs	
– MPI	+	CUDA	
– MPI	+	OpenMP	+	CUDA	
– MPI	+	OpenCL	

•  Distributed	+	shared	memory	+	coprocessors	
– MPI	
– MPI	+	OpenMP	
– MPI	+	OpenCL	

csinparallel.org	

Problems	
•  MPI,	OpenMP,	etc.	have	carried	us	this	far,	but	
the	experts	say	they	are	insufficient	to	let	us	
reach	exascale	compu@ng	

•  MPI	is	rela@vely	low-level	

•  Newer	high	level	languages	are	being	developed	
to	make	it	easier	to	develop	scalable	programs	
(at	least	for	distributed+shared	mem.	hybrids):	
–  Chapel:	APGAS	language	from	Cray	
–  Scala:	immutable	OO	Actors,	message	passing,	JVM	
– …	

csinparallel.org	

APGAS	Languages	
…	asynchronous	par@@oned	global	address	space	
•  All	tasks	share	a	global	address	space	/	memory	
•  All	tasks	can	access	the	en@re	space,	but	the	
address	space	is	logically	par@@oned,	so	a	task	
may	have	affinity	for	a	par@cular	par@@on:	
–  Thread-local	memory	on	a	shared	mem.	system	
–  Process	memory	on	a	distributed	mem.	system	
– …	

•  Merges	strengths	of	shared+distributed	systems	
–  Chapel,	Unified	Parallel	C	(UPC),		X10,	Fortress,	…	

csinparallel.org	

csinparallel.org	

Informa@on	Overload	

•  If	you	are	saying	to	yourself:		
– “This	is	overwhelming!”	
– “PDC	is	changing	so	fast;	is	there	any	content	that	
is	worth	my	4me	to	learn	/	not	ephemeral?”	

	Don’t	feel	bad;	you’re	not	alone!	

•  One	of	our	goals	is	to	establish	a	suppor@ve	
community	for	PDC	educators!	

csinparallel.org	

Parallel	Paierns	

•  …	are	industry-standard	techniques	and	
best-prac@ces	that	have	proven	useful	in	
many	different	parallel	contexts.	

•  …	are	built	into	popular	plaforms	like	MPI	
and	OpenMP.	

•  …	are	likely	to	be	useful	for	the	long-term,	
regardless	of	future	PDC	developments.	

•  …	provide	a	way	to	organize	PDC	concepts.	

csinparallel.org	

Parallel	Paiern	Categories	

These	paierns	can	be	categorized:	

•  Algorithmic	Strategies:	general	approaches	to	
devising	parallel	algorithms.	

•  Implementa@on	Strategies:	paierns	used	to	
implement	a	given	algorithmic	strategy.	

•  Communica@on	&	Synchroniza@on:	paierns	
for	synchronizing/communica@ng	between	
the	tasks	in	a	given	strategy.	

csinparallel.org	

Parallel	Algorithm	Strategies	

Most	parallel	programs	use	one	of	just	three	
parallel	algorithm	strategy	paLerns:	
•  Data	decomposi@on:	divide	up	the	data	and	
process	it	in	parallel.	

•  Task	decomposi@on:	divide	the	algorithm	into	
func@onal	tasks	that	are	performed	in	parallel	
(to	the	extent	possible).	

•  Pipeline:	divide	the	algorithm	into	linear	
stages,	through	which	we	“pump”	the	data.	

csinparallel.org	

Data	Decomposi@on:	1	Thread	

Thread	0	

csinparallel.org	

Data	Decomposi@on:	2	Threads	

Thread	0	

Thread	1	

csinparallel.org	

Data	Decomposi@on:	4	Threads	

Thread	0	

Thread	1	

Thread	2	

Thread	3	

csinparallel.org	

Algor.	Strategy:	Task	Decomposi@on	
–  	 The	independent	func@ons	in	a	sequen@al	
computa@on	can	be	“parallelized”:	

!int main() {!
! !x = f();!
! !y = g();!
! !z = h();!
! !w = x + y + z;!
!}!

f()! g()! h()!

Thread	1	 Thread	2	 Thread	3	

main()!

Thread	0	

csinparallel.org	

Algorithmic	Strategy:	Pipeline	
-	When	func@ons	are	not	independent:	

!int main() {!
! !...!
! !while (fin) {!
! ! !fin >> a;!
! ! !b = f(a);!
! ! !c = g(b);!
! ! !d = h(c);!
! ! !fout << d;!
! !}!
! !...!

}!

a0	

Time	Step:	 0	

a1	

b0	

1	

a2	

b1	

c0	

2	

a3	

b2	

c1	

d0	

3	

a4	

b3	

c2	

d1	

4	

a5	

b4	

c3	

d2	

5	

a6	

b5	

c4	

d3	

6	

f(a)!

main()!

g(b)!

h(c)!

Thread	1	

Thread	2	

Thread	3	

Thread	0	

they	can	s@ll	be	pipelined…	

csinparallel.org	

Implement.	Strategy:	Parallel	Loop	

One	Thread:	

Two	Threads:	

Four	Threads:	

csinparallel.org	

Communica@on	Paiern:	Reduc@on	
Parallel	programs	o=en	need	to	combine	the	local	
results	of	N	parallel	tasks.	
•  When	N	is	in	the	millions,	O(N)	@me	is	too	slow	
•  The	reduc@on	paiern	does	it	in	O(lg(N))	@me:	
	

8	 5	 3	 5	 9	6	 2	 4	

To	sum	
these	

numbers:	

14	 8	 14	 6	
Time	1	

22	 20	

Time	2	

42	

Time	3	

csinparallel.org	

Conclusions	
•  There	are	many	possible	star@ng	points	in	PDC	
–  There	are	many	hardware	and	so=ware	op@ons	
– Geyng	started	is	more	important	than	where	
–  Choose	a	so=ware	plaform(s)	that	works	best	at	your	
ins@tu@on/department:	
o C/C++:	MPI+OpenMP	
o Java:	Scala	
o Language	agnos@c:	Chapel	
o …	

•  Paierns	offer	a	much-needed	source	of	stability.	
•  CSinParallel	is	here	to	help!	

Thank	
You!	

