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Overview

Let’s explore two related-but-different areas:
e Shifts in the hardware landscape
* Corresponding changes on the software side

But first...
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A Word From Our Sponsors

* A CSinParallel “module” is 1-3 days worth of
teaching materials on PDC topics, usually
including hands-on activities/tutorials.

* The CSinParallel project includes SS for
module authors — PDC educators willing to
share / convert their teaching materials into
CSinParallel modules.

* |f you are interested in authoring, talk to me!
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Hardware Landscape

Parallel Systems

/N
Shared Hybrid Distributed
Memory Systems Memory
[\ /\ AN
Multicore | | Accelerators Newer Modern Older
ZF Clusters Super Clusters
Computers
GPUs | | Coprocessors
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History / Timeline

(G Vector supercomputers Shared
Multiprocessors (networked) Distributed
Cluster supercomputers Distributed
1990s Internet Distributed
Symmetric multiprocessors Shared
O GPUsj Shared
Multicore processors Shared
5010s Hybrid supercomputers/clusters Both

Coprocessors (w. vector units)  Shared
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History / Timeline

PDC Hardware Platforms m

1980 Vector supercomputers Proprietary
S
Multiprocessors (networked) Proprietary
Cluster supercomputers MPI
1990s Internet Sockets,BOINC
Symmetric multiprocessors Various
GPUs CUDA,OpenCL
2000s _ ,
Multicore processors Various
Hybrid systems Combinations
2010s

Coprocessors (w. vector units) Various
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Today’s Software Landscape

* The software generally varies with the
hardware platform it is intended to run on:

— Distributed memory systems

— Shared memory systems
* Vanilla shared-memory systems
* Shared-memory systems with Accelerators

— Manycore GPUs and/or coprocessors

— Hybrid systems
e No standard “one size fits al

|H

solution (yet)
* Let’s explore these one at a time...
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Distributed Memory Systems

Two broad categories; both use standalone
compute nodes, each with their own memory:
* Local-area distributed-memory systems

— Nodes are connected via a local area network
(the faster the better)

* Wide-area distributed-memory systems

— Nodes are connected via a wide area network
(such as the Internet — comparatively slow)

ST- OLAF
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Distributed Memory System Software

Local-area dist-mem. systems use multiprocessing:

* Remote processes are launched on compute nodes

 The message passing interface (MPI) is the industry
standard platform for such systems
— Implementations for C, C++, Fortran, Python, ...
— Generality: Works well on shared-memory systems too

 MapReduce is a Google platform for reliably solving
some kinds of distributed problems

— Hadoop is an open-source version of MapReduce

— WebMapReduce is a browser-based Hadoop front end
developed by Dick Brown + St. Olaf students
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Distributed Mem. System Software (2)

For wide-area distributed-memory systems:
* Remote processes communicate via sockets:

— Client-server systems are most common
— Peer to peer systems are a decentralized alternative...

 The Berkeley Open Infrastructure for Network
Computing (BOINC) is a widely used platform for
coordinating distributed computing tasks:

— SETI@Home, Folding@Home, LHC@Home, ...

The relative slowness of wide-area communication limits
this approach to embarrassingly parallel problems.

L CALVIN ST- OLAF

MINDS IN THE MAKING ) )
COLLEGI

@ MACALESTER COLLEGE




CS

CS? csinparallel.org

Shared Memory Systems

Three broad categories:

* Vanilla shared-memory systems
— Multicore / Multisocket CPU-based systems
— Cores share a common memory

* Accelerated shared-memory systems

— Vanilla systems plus many-core accelerator(s)
(GPGPU, Coprocessor)

* “Hybrid” systems: CPU+GPU on same chip
Shared-memory systems use multithreading
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Vanilla Shared Mem. Software

Vanilla shared-memory systems are ubiquitous:

* Open MultiProcessing (OpenMP) is an industry
standard for multithreading
— Non-proprietary open standard
— Multilanguage support (C, C++, Fortran)
— Pragma-based programming; relatively easy

* Lots of language-based multithreading options:
— Java, C (pthreads), C++11 (Boost), C# (.NET), ...

* Vendor-specific (proprietary) libraries/languages
— Intel’s Thread Building Blocks (TBB), Google’s Go, ...

- C ALV IN ST- OLAF

MINDS IN THE MAKING ) )
COLLEGI

@ MACALESTER COLLEGE




CS

CSZ csinparallel.org

iPad 3: quad—core A5X chip

iPhone 5: dual-core A6 chip
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Vanilla Shared Mem. Software (2)

Vanilla shared-memory systems can also be
programmed via message-passing:

* MPI also works well on these systems

 Some languages utilize message-passing tasks to
avoid multithreading’s race conditions:
— Erlang, Scala, ...
— Programs written in these languages port easily to
distributed-memory systems

Every CS undergraduate student should learn how to
program vanilla shared-memory parallel systems
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Accelerated Shared Mem. Systems

Software for shared-memory systems with
accelerators varies with the accelerator:

* General Purpose Graphics Processing Unit (GPU)
systems

— Nvidia
— AMD’s ATI/Radeon
e Coprocessor systems

— Intel’s Xeon Phi (61 cores, 4 hw threads/core),
available to us on Intel’s Manycore Testing Lab (MTL)

— Parallela’s Epiphany (16 cores)
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Accelerated Shared Mem. Software

Software for shared-memory systems with GPUs:
 Compute Unified Device Architecture (CUDA):

— Proprietary; works only on Nvidia GPU cores
+ Well established; extensive examples/documentation available

e Open Compute Language (OpenCL):
+ Platform independent open standard
+ Can use every core in a system (Nvidia or not)
— Significantly more complicated than CUDA
— Fewer examples/tutorials/documentation available

 OpenACC (Open Acceleration?):
+ Pragmas (a la OpenMP) to simplify GPU computing
— Promising, but still in development

* Intel’s Array Building Blocks (ArBB):
+ C++ library for vectorized parallel computing

— Proprietary; C++ only
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Accelerated Shared Mem. Software (2)

Shared-memory systems with coprocessors
(cluster on a chip):

* MPI

* OpenMP

* OpenCL

* Intel’s ArBB

Coprocessors are fairly new, so other software
platforms for them will likely appear...
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Hybrid Systems

Complications:
1. Unicore CPUs are just about extinct...
— All recent clusters have multicore CPUs
2. Accelerators can be added to cluster nodes
This creates lots of hybrid-system options

— Distributed + shared memory
— Distributed + shared memory + GPUs

— Distributed + shared memory + coprocessors
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Hybrid System Software

* Distributed + shared memory
— MPI (1 MPI process/core)
— MPI + OpenMP (1 MPI process/node)

— MapReduce (1 or more MR process/node)

* Distributed + shared memory + GPUs
— MPI + CUDA
— MPIl + OpenMP + CUDA
— MPI + OpenCL

* Distributed + shared memory + coprocessors
— MPI
— MPI + OpenMP
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Problems

 MPI, OpenMP, etc have carried us this far, but
the experts say they are insufficient to let us
reach exascale computing

 MPI is relatively low-level

* Newer high level languages are being developed
to make it easier to develop scalable programs
(at least for distributed+shared mem. hybrids):

— Scala: immutable OO Actors, message passing, JVM
— Chapel: APGAS language from Cray
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APGAS

... asynchronous partitioned global address space
* All tasks share a global address space / memory

e All tasks can access the entire space, but the
address space is logically partitioned, so a task
may have affinity for a particular partition:

— Thread-local memory on a shared mem. system
— Process memory on a distributed mem. system

 Merges strengths of shared+distributed systems
— Chapel, Unified Parallel C (UPC), X10, Fortress, ...
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“Mr. Osborne, may | be excused?
My brain is full.”
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Information Overload

* |f you are saying to yourself:
— “This is overwhelming!”
— “There’s no way | can learn all of this stuff.”

— “PDC is so unstable; is there any content that is
worth my time to learn / not ephemeral?”

Don’t feel bad; you’re not alone!

* One of our goals is to establish a community
to provide mutual support for PDC educators!
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Parallel Patterns

e ... are industry-standard practices and
techniques that have proven useful in many
different parallel contexts.

e ... are built into popular platforms like MPI
and OpenMP.

e ...seem likely to have long-term usefulness,
regardless of future PDC developments.

e ...provide a way to organize PDC concepts.
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Parallel Patterns (2)

Example 1: Most parallel programs use one of just
three parallel algorithm strategy patterns:

* Data decomposition: processes/threads divide up
the data and process it in parallel.

* Task decomposition: processes/threads divide
the algorithm into functional tasks that they
perform in parallel (to the extent possible).

* Pipeline: processes/threads divide the algorithm
into linear stages, through which they “pump”
the data.

ST- OLAF
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Parallel Patterns (3)

 Data decomposition:

Thread 0

Thread 1

Thread 2

Thread 3

g COA LV TN ST;OLAF‘
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Parallel Patterns (4)

* Task decomposition:

— The independent functions in a sequential
computation can be “parallelized”:

int main() {

X = f(); Thread O
Yy = g(); C _main()
z = h();
} Thread 1 Thread 2 Thread 3
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Parallel Patterns (5)

* Pipeline: When functions are not independent:

int main() {

%ﬂile (fin) {

fin >> a; Thread 1
b = f(a);
c = g(b);
d = h(c); Thread 2
fout << d;

}

c oo Thread 3

}
they can still be pipelined...
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Parallel Patterns (6)

Example 2: Parallel programs often need to combine

the local results of N parallel tasks.
* When N is in the millions, O(N) time is too slow

* The reduction pattern does it in O(lg(N)) time:

To sum

09999999
on
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Parallel Application
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CSinParallel Patternlets:
OpenMP v

Parallel Application
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Patternlets...

.. are minimalist, scalable, executable programs,
each illustrating a particular pattern’s behavior:

— Minimalist so that students can grasp the concept
without non-essential details getting in the way

— Scalable so that students see different behaviors as
the number of threads changes

— Executable to let students see the pattern in action:
* Instructors can use it in a live-coding demo
e Students can use it in a hands-on exercise

We encourage you to explore the (still growing)

CSinParallel Patternlets module.
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Conclusions

* You have to start somewhere
— Getting started is more important than where

 PDC hardware resources are abundant

* Choose a software platform(s) based on what
will work best at your institution/department:
— C/C++: MPI+OpenMP
— Language agnostic: Chapel

— Java: Scala Thank

B You!
* CSinParallel is here to help!
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