CS

CS? csinparallel.org

Surveying the PDC Landscape

Joel Adams
Calvin College

ROMACALES [FR (SORMEGH

CS

Cse csinparallel.org

Overview

Let’s explore two related-but-different areas:
e Shifts in the hardware landscape
* Corresponding changes on the software side

But first...

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

A Word From Our Sponsors

* A CSinParallel “module” is 1-3 days worth of
teaching materials on PDC topics, usually
including hands-on activities/tutorials.

* The CSinParallel project includes SS for
module authors — PDC educators willing to
share / convert their teaching materials into
CSinParallel modules.

* |f you are interested in authoring, talk to me!

= C ALV IN ST- OLAF

MINDS IN THE MAKING) X
COLLEGIE

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Hardware Landscape

Parallel Systems

/N
Shared Hybrid Distributed
Memory Systems Memory
[\ /\ AN
Multicore | | Accelerators Newer Modern Older
ZF Clusters Super Clusters
Computers
GPUs | | Coprocessors
CALVIN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CSZ csinparallel.org

History / Timeline

(G Vector supercomputers Shared
Multiprocessors (networked) Distributed
Cluster supercomputers Distributed
1990s Internet Distributed
Symmetric multiprocessors Shared
O GPUsj Shared
Multicore processors Shared
5010s Hybrid supercomputers/clusters Both

Coprocessors (w. vector units) Shared

CS

CS? csinparallel.org

History / Timeline

PDC Hardware Platforms m

1980 Vector supercomputers Proprietary
S
Multiprocessors (networked) Proprietary
Cluster supercomputers MPI
1990s Internet Sockets,BOINC
Symmetric multiprocessors Various
GPUs CUDA,OpenCL
2000s _ ,
Multicore processors Various
Hybrid systems Combinations
2010s

Coprocessors (w. vector units) Various

CS

CS? csinparallel.org

Today’s Software Landscape

* The software generally varies with the
hardware platform it is intended to run on:

— Distributed memory systems

— Shared memory systems
* Vanilla shared-memory systems
* Shared-memory systems with Accelerators

— Manycore GPUs and/or coprocessors

— Hybrid systems
e No standard “one size fits al

|H

solution (yet)
* Let’s explore these one at a time...

= C ALV IN ST- OLAF

MINDS IN THE MAKING) X
COLLEGIE

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Distributed Memory Systems

Two broad categories; both use standalone
compute nodes, each with their own memory:
* Local-area distributed-memory systems

— Nodes are connected via a local area network
(the faster the better)

* Wide-area distributed-memory systems

— Nodes are connected via a wide area network
(such as the Internet — comparatively slow)

ST- OLAF

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Distributed Memory System Software

Local-area dist-mem. systems use multiprocessing:

* Remote processes are launched on compute nodes

 The message passing interface (MPI) is the industry
standard platform for such systems
— Implementations for C, C++, Fortran, Python, ...
— Generality: Works well on shared-memory systems too

 MapReduce is a Google platform for reliably solving
some kinds of distributed problems

— Hadoop is an open-source version of MapReduce

— WebMapReduce is a browser-based Hadoop front end
developed by Dick Brown + St. Olaf students

- CALVIN ST- OLAF

MINDS IN THE MAKING X)
COLLEGI

@ MACALESTER COLLEGE

Ve CS? csinparallel.org

Im
‘ ! “u..l II'“' \\\\\“

\\\\ \\\\u \:'

A KR TEES
\.\‘ w.m_

- N
i jf " v
T
; ¥y e ‘I (‘ JL"

Srrrrre

"“\HHI.....HHI..

™~

4
4
&

A, s, o ol iy

!
W\
)
]

ST- OlAF

MINDS IN THE MA))
COLLEGE

CS

CS? csinparallel.org

Distributed Mem. System Software (2)

For wide-area distributed-memory systems:
* Remote processes communicate via sockets:

— Client-server systems are most common
— Peer to peer systems are a decentralized alternative...

 The Berkeley Open Infrastructure for Network
Computing (BOINC) is a widely used platform for
coordinating distributed computing tasks:

— SETI@Home, Folding@Home, LHC@Home, ...

The relative slowness of wide-area communication limits
this approach to embarrassingly parallel problems.

L CALVIN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Shared Memory Systems

Three broad categories:

* Vanilla shared-memory systems
— Multicore / Multisocket CPU-based systems
— Cores share a common memory

* Accelerated shared-memory systems

— Vanilla systems plus many-core accelerator(s)
(GPGPU, Coprocessor)

* “Hybrid” systems: CPU+GPU on same chip
Shared-memory systems use multithreading

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Vanilla Shared Mem. Software

Vanilla shared-memory systems are ubiquitous:

* Open MultiProcessing (OpenMP) is an industry
standard for multithreading
— Non-proprietary open standard
— Multilanguage support (C, C++, Fortran)
— Pragma-based programming; relatively easy

* Lots of language-based multithreading options:
— Java, C (pthreads), C++11 (Boost), C# (.NET), ...

* Vendor-specific (proprietary) libraries/languages
— Intel’s Thread Building Blocks (TBB), Google’s Go, ...

- C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CSZ csinparallel.org

iPad 3: quad—core A5X chip

iPhone 5: dual-core A6 chip

CALVIN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Vanilla Shared Mem. Software (2)

Vanilla shared-memory systems can also be
programmed via message-passing:

* MPI also works well on these systems

 Some languages utilize message-passing tasks to
avoid multithreading’s race conditions:
— Erlang, Scala, ...
— Programs written in these languages port easily to
distributed-memory systems

Every CS undergraduate student should learn how to
program vanilla shared-memory parallel systems

L CALVIN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Accelerated Shared Mem. Systems

Software for shared-memory systems with
accelerators varies with the accelerator:

* General Purpose Graphics Processing Unit (GPU)
systems

— Nvidia
— AMD’s ATI/Radeon
e Coprocessor systems

— Intel’s Xeon Phi (61 cores, 4 hw threads/core),
available to us on Intel’s Manycore Testing Lab (MTL)

— Parallela’s Epiphany (16 cores)

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

- | hy A
LBOTHIETIIN ¥
LRI TR
o

—

(intel’ inside:

=1iA

n'Phi’

. Xeo

CALVIN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Accelerated Shared Mem. Software

Software for shared-memory systems with GPUs:
 Compute Unified Device Architecture (CUDA):

— Proprietary; works only on Nvidia GPU cores
+ Well established; extensive examples/documentation available

e Open Compute Language (OpenCL):
+ Platform independent open standard
+ Can use every core in a system (Nvidia or not)
— Significantly more complicated than CUDA
— Fewer examples/tutorials/documentation available

 OpenACC (Open Acceleration?):
+ Pragmas (a la OpenMP) to simplify GPU computing
— Promising, but still in development

* Intel’s Array Building Blocks (ArBB):
+ C++ library for vectorized parallel computing

— Proprietary; C++ only
= C ALV IN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CSZ csinparallel.org

CALVIN ST- OLAF

cem n

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Accelerated Shared Mem. Software (2)

Shared-memory systems with coprocessors
(cluster on a chip):

* MPI

* OpenMP

* OpenCL

* Intel’s ArBB

Coprocessors are fairly new, so other software
platforms for them will likely appear...

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

CALVIN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Hybrid Systems

Complications:
1. Unicore CPUs are just about extinct...
— All recent clusters have multicore CPUs
2. Accelerators can be added to cluster nodes
This creates lots of hybrid-system options

— Distributed + shared memory
— Distributed + shared memory + GPUs

— Distributed + shared memory + coprocessors

L CALVIN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Hybrid System Software

* Distributed + shared memory
— MPI (1 MPI process/core)
— MPI + OpenMP (1 MPI process/node)

— MapReduce (1 or more MR process/node)

* Distributed + shared memory + GPUs
— MPI + CUDA
— MPIl + OpenMP + CUDA
— MPI + OpenCL

* Distributed + shared memory + coprocessors
— MPI
— MPI + OpenMP

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Problems

 MPI, OpenMP, etc have carried us this far, but
the experts say they are insufficient to let us
reach exascale computing

 MPI is relatively low-level

* Newer high level languages are being developed
to make it easier to develop scalable programs
(at least for distributed+shared mem. hybrids):

— Scala: immutable OO Actors, message passing, JVM
— Chapel: APGAS language from Cray

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

APGAS

... asynchronous partitioned global address space
* All tasks share a global address space / memory

e All tasks can access the entire space, but the
address space is logically partitioned, so a task
may have affinity for a particular partition:

— Thread-local memory on a shared mem. system
— Process memory on a distributed mem. system

 Merges strengths of shared+distributed systems
— Chapel, Unified Parallel C (UPC), X10, Fortress, ...

& CALVIN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CSZ csinparallel.org

“Mr. Osborne, may | be excused?
My brain is full.”

5 C ALV IN ST- OLAF

MINDS IN THE MAKING

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Information Overload

* |f you are saying to yourself:
— “This is overwhelming!”
— “There’s no way | can learn all of this stuff.”

— “PDC is so unstable; is there any content that is
worth my time to learn / not ephemeral?”

Don’t feel bad; you’re not alone!

* One of our goals is to establish a community
to provide mutual support for PDC educators!

ST- OLAF

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Parallel Patterns

e ... are industry-standard practices and
techniques that have proven useful in many
different parallel contexts.

e ... are built into popular platforms like MPI
and OpenMP.

e ...seem likely to have long-term usefulness,
regardless of future PDC developments.

e ...provide a way to organize PDC concepts.

= C ALV IN ST- OLAF

MINDS IN THE MAKING) X
COLLEGIE

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Parallel Patterns (2)

Example 1: Most parallel programs use one of just
three parallel algorithm strategy patterns:

* Data decomposition: processes/threads divide up
the data and process it in parallel.

* Task decomposition: processes/threads divide
the algorithm into functional tasks that they
perform in parallel (to the extent possible).

* Pipeline: processes/threads divide the algorithm
into linear stages, through which they “pump”
the data.

ST- OLAF

@ MACALESTER COLLEGE

CS

CS csinparallel.org

Parallel Patterns (3)

 Data decomposition:

Thread 0

Thread 1

Thread 2

Thread 3

g COA LV TN ST;OLAF‘

cmm -

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Parallel Patterns (4)

* Task decomposition:

— The independent functions in a sequential
computation can be “parallelized”:

int main() {

X = f(); Thread O
Yy = g(); C _main()
z = h();
} Thread 1 Thread 2 Thread 3

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

Cse csinparallel.org

Parallel Patterns (5)

* Pipeline: When functions are not independent:

int main() {

%ﬂile (fin) {

fin >> a; Thread 1
b = f(a);
c = g(b);
d = h(c); Thread 2
fout << d;

}

c oo Thread 3

}
they can still be pipelined...

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

CS

CS? csinparallel.org

Parallel Patterns (6)

Example 2: Parallel programs often need to combine

the local results of N parallel tasks.
* When N is in the millions, O(N) time is too slow

* The reduction pattern does it in O(lg(N)) time:

To sum

09999999
on

@ MACALESTER COLLEGE ST- OLAF

CS

CS(csinparallel.org

Parallel Application

Structural, ‘Strategies Concurrent
Computational Execution
[Patterns
- —| Parallel Algorithm Strategy |
~| Structural Patterns | :
[— Advancing
Data Decomposition | Program Counters
lterative Refinement | : ;
Pipe and Filter L{ Geometric Decomposition |
Map-Reduce Task Decomposition|
! Thread Pool
__| Model-View- Recursive Splittin
Controller _{ pring] Task Graph
TR ipet | Coordination
ccm‘ > itational Patterns
¥ : l { Implementation Strategy |
Collective
N-body methods l - b, 2
i Y | " Program Structure | Data Structure Synchronization
— Mont Carlo Methods | : 2 i 80I|ective
ommunication
B Eﬁgasf Algebra —| Single Program, Multiple Data | Shared :
Queue
Dense —{ Master-Worker ~
1 Li Shared b
;mekar Alfebra | Parallel For Loop | Hash Table e
acktrac " Stri —
Programming - Block Synchronous Parallelisrr | _| Shared :
. Data — Message Passing |
L Graph:Algoithmnis) { Mutual Exclusion |
—| Structured Grids | | Graph Partinioning |

CS

CS csinparallel.org

CSinParallel Patternlets:
OpenMP v

Parallel Application

m‘- ‘Strategies Concurrent M Pl ‘/
Computational e Execution
: Patterns
_ - — Parallel Algorithm Strategy |
| Structural Patterns | 3
: _ | Advancing
Data Decomposition | Program Counters
lterative Refinement | : ;
Pipe and Filter \/ \A{ Geometric Decomposition |
Map-Reduce Task Decomposition|
: v |iheadroo
__| Model-View- Recursive Splittin Task Graph |
Controller —— _{ pring] Task Graph
- [Computational Patlerns| = Ppsliie|
- { Implementation Strategy | :
: Collective
N-body methods l - oy o
H y | Program Structure | Data Structure Synchronization
— Mont Carlo Methods | Y ! Collective
| Communication
— Ei?\aeraszlgebra //—{ Single Program, Multiple Data | (S)t&zlfg :
Dense /\/ Master-Worker
Linear Algebra / / [Parallel For Loop| ot
|| g?m:ﬁg; S ‘/ [Strict Déta Parallel | Rif;@bmed
| | Dynamic
Programming [Block Synchronous Parallelism | / L Sg?a'ed ‘/ | [Wessage Passing |
- (Graph Algorithms Lutual Exciusion]
—| Structured Grids | | Graph Partinioning |

CS

CS? csinparallel.org

Patternlets...

.. are minimalist, scalable, executable programs,
each illustrating a particular pattern’s behavior:

— Minimalist so that students can grasp the concept
without non-essential details getting in the way

— Scalable so that students see different behaviors as
the number of threads changes

— Executable to let students see the pattern in action:
* Instructors can use it in a live-coding demo
e Students can use it in a hands-on exercise

We encourage you to explore the (still growing)

CSinParallel Patternlets module.
@ MACALESTER COLLEGE N, CALVIN ST- OLAF

MINDS IN THE MAKING X _
COLLEGI

CS

CS? csinparallel.org

Conclusions

* You have to start somewhere
— Getting started is more important than where

 PDC hardware resources are abundant

* Choose a software platform(s) based on what
will work best at your institution/department:
— C/C++: MPI+OpenMP
— Language agnostic: Chapel

— Java: Scala Thank

B You!
* CSinParallel is here to help!

= C ALV IN ST- OLAF

MINDS IN THE MAKING))
COLLEGI

@ MACALESTER COLLEGE

