

Using Parallel Computing in Drug Design

Richard A. Brown, St. Olaf Elizabeth Shoop, Macalester College Suzanne J. Matthews, West Point Joel C. Adams, Calvin College

cs

How do pharmaceutical companies design the medicines we use?

CS CS

How medicines work

Our **DNA** is like a book of recipes

 Instead of food, DNA contains the instructions for making proteins in our bodies

cs cs

How medicines work

- A protein's shape determines the function it performs in a person's body
- To design a drug, we can find ligands
 (new pieces) to change a protein's shape

cs

How medicines work

Strategy for drug design software

- 1. Generate ligands to try for particular protein
 - Some ligands will fit, some won't
- 2. Compute a score for each ligand that simulates how well it will:
 - fit that protein; and
 - produce a desired shape change
- 3. Identify the **highest scoring ligands** for actual synthesis (production) and testing

Drug design exemplar code

A program structured like drug design software

- 1. Generate ligands to try for particular protein
 - Random character strings of random lengths
- 2. Compute a score for each ligand
 - Compare for maximum match with string representing a protein
- lcacxet qvivg
- Insertions and deletions allowed
- 3. Identify the **highest scoring ligands**

Drug design exemplar code

A program *structured like* drug design software

- 1. Generate ligands to try for particular protein
 - **Fast**
- 2. Compute a score for each ligand
 - Takes a long time
 - Parallelize by using multiple Icacxet computation threads for different ligands

cx tbcrv

- 3. Identify the **highest scoring ligands**
 - Fast just sort and find maximum

Drug design exemplar code

Command-line arguments:

./drugdesign-static threads maxlen count

- threads is number of simultaneous threads
- maxlen is maximum length of a ligand
 - Each ligand has random length up to this max
- count is number of ligands to score

