

CSinParallel Pacific Northwest 2016 Workshop

Introduction to CSinParallel

Dick Brown, St. Olaf College

Workshop site

On CSinParallel.org:

http://serc.carleton.edu/csinparallel/workshops/PacificNW16/index.html

See also workshop handouts

Take-home messages

- The traditional CS curriculum is "striking out" against the fastballs and curve balls of current computing technologies
- Our students need preparation in parallel and distributed computing (PDC) for their careers
- The **CSinParallel strategy** for effective, quicker curricular change
- Strategic resources for teaching PDC

The BIG challenge: Forming an effective community to support this curricular transition

cs

Striking out against new PDC technologies

http://armchairgm.wikia.com/File:1206127655_Strikeout.gif

Striking out against new PDC technologies

Strike 1: Multicore processors

- The norm for about 10 years
- Why? "Hitting the wall" in:
 - a. (Electrical) power
 - b. **ILP** (can't hide much more parallelism within a core)
 - c. Deepening memory hierarchy

http://images.bit-tech.net/content_images/2012/11/amd-fx-8350-review/piledriver-3b.jpg

cs

Striking out against new PDC technologies

Strike 2: Cloud computing revolution

Distributed computing empowers exciting new web services

http://cloudcomputingadvices.com/wp-content/uploads/2012/08/cloud_computing-Features.jpg

Striking out against new PDC technologies

Strike 3: Heterogeneous computation (It's not just for HPC anymore)

- Commodity chips with multiple core types
 - Intel vector cores; AMD GPU + CPU cores
- Multicore and heterogeneous multicore as distributed/cluster computing nodes

Educating students for their careers

- Parallelism and concurrency traditionally taught in Architecture and Operating Systems
 - Still necessary, just no longer sufficient
- Commodity computing, not just HPC research
- Hardware and software evolving rapidly
 - Including languages, libraries, frameworks
- Recent curriculum recommendations
 - ACM/IEEE CS2013, for undergraduate CS majors
 - TCPP recommendations for PDC

Educating students for their careers

- Parallelism and concurrency traditionally taught in Architecture and Operating Systems
 - Still necessary, just no longer sufficient
- Commodity computing, not just HPC research
- Hardware and software evolving rapidly
 - Including languages, libraries, frameworks
- Recent curriculum recommendations
 - ACM/IEEE CS2013, for undergraduate CS majors
 - TCPP recommendations for PDC

... Rapid curricular change??

The CSinParallel strategy

1. Brief, flexible PDC teaching modules

- Almost any CS course, at almost any level
- 1- to 3-day course units, for feasible incremental modifications to a syllabus
- Broad <u>variety</u> of topics, technologies, languages, etc.
- Adaptable/editable for local modification
- Emphasis on <u>hands-on exercises</u> with current technologies
- Learning objectives, teaching tips, etc.

The CSinParallel strategy

- 2. Pedagogical effectiveness
- Small interventions, big impact
 - Opportunities for <u>broad exposure</u> to PDC
- Effective hands-on learning with PDC tools
- Spiral approach
 - Recurring topics in multiple contexts leads to better retention and deeper understanding
- Early and often
 - Message: PDC is natural and pervasive in CS

The CSinParallel strategy

3. Community of folks seeking to teach PDC

- Community support
 - Communicating with others trying same things (modules, institution types, courses, techs,...)
 - Resources for recording others' past experiences (e.g., Piazza, teaching tips)

Creating community/human networking is a primary goal for this workshop event

Some strategic resources

Modules

- Basic CSinParallel modules
 - Examples: WMR for CS1; Multicore Programming (intro); Concurrent Data Structures (C++ or Java); Parallel Sorting
- "Exemplar" modules
 - Present a significant domain application (e.g., drug design, epidemiology, traffic flow) together with a sequential implementation
 - Choice of parallel/distributed implementations
 - Pedagogical possibilities + student motivation

– "Taste" modules

 Brief introductory experience of a new technology, or parallel language, larger educational work, etc.

Some strategic resources

 Relating local courses and CSinParallel materials to latest curriculum recommendations (CS2013, TCPP)

Parallel Programming Patterns

- Recurring design strategies for parallel programs,
 distilled from practices of experienced pros
- Guides to problem solving and parallel thinking for undergraduate learners of PDC

Some strategic resources

Platform resources

- Example: <u>WebMapReduce (WMR)</u>, for beginning or advanced students to learn about scalable computations that fuel cloud-powered services
- Example: <u>CDER hardware resources</u>, free educational access to PDC hardware
- Example: <u>Inexpensive micro-clusters</u>
- Students helping profs, other students
 - Scalable collaborative resource
 - Student capacity for exploring new technologies

This workshop

Adaptable program – let us know your interests

Basic plan focuses on **hands-on experience**

Tuesday	 CSinParallel (✓); PDC; resources OpenMP (shared-mem. parallel) WebMapReduce (XXXXL data)
Wednesday	 MPI (distributed computing) Some current trends GPU (SIMD parallel)
Thursday	 Integrating PDC in <i>your</i> curriculum Next steps?

Refined BIG challenge

How can we form a supportive community that benefits professors more than it "costs"

What do we mean by "costs"?

- Learning new systems (e.g., MPI, piazza)
- Competition for time during the term
- Weight of inertia against change

Recap

- Hardware and software parallel and distributed computing (PDC) technologies are evolving rapidly, with no end in sight
 - Multicore; cloud/distributed; heterogenous
- Students need to know about PDC as they enter the workforce.
- CSinParallel offers modules, resources, and strategies for teaching PDC, in a context of supportive community
- Biggest unsolved problem:
 <u>Creating a support community worth the effort</u>

cs

Questions?

