Assessing Teaching OpenMP on the Raspberry Pi

Suzanne J. Matthews - West Point

Joel C. Adams – Calvin College

Richard A. Brown – St. Olaf College

Elizabeth Shoop – Macalester College

Workshops

Three 90-minute workshops (Tapia'16, CSE'17, SIGCSE'17)

- 15 minute intro on Raspberry Pi + multicore fundamentals
- 50 minutes patternlet exploration
- 20 minutes on drug design exemplar
- 5 minute discussion + wrap-up

Assessment

	Pre-Survey			Post-Survey			<i>p</i> -values
	T	С	S	T	С	S	
Questions/ Number of Responses	33	16	17	32	16	17	
1. How confident are you that you can describe how	2.15	2.38	2.88	3.66	4.18	4.06	T: 3.129×10^{-8}
to decompose a problem using multiple threads and							C: 1.653×10^{-4}
implement it using a parallel loop?							S: 4.556×10^{-3}
2. How confident are you that you could describe	2.55	3.06	3.17	3.94	4.38	4.18	T: 1.071×10^{-6}
the advantages and disadvantages of using parallel							C: 6.742×10^{-4}
programming on shared memory multicore ma-							S: 2.753×10^{-2}
chines to someone familiar with programming?							
3. How confident are you that you can define	2.27	2.81	3.12	4.03	4.5	4.23	T: 5.912×10^{-7}
speedup and describe it to someone familiar with							C: 1.965×10^{-4}
programming?							S: 2.081×10^{-2}
4. How confident are you that you can describe	2.48	2.81	3.12	3.83	4.5	4.17	T: 2.349×10^{-5}
what a race condition is and how to avoid it when							C: 6.933×10^{-4}
writing parallel programs that use shared memory?							S: 7.663×10^{-3}
5. To what extent did using an inexpensive multi-	n/a	n/a	n/a	4.22	4.13	3.88	n/a
core computer (e.g. the Raspberry Pi) to run parallel							
programs motivate you to learn more about parallel							
computing in the future?							

Assessment

Sample Open-Ended Responses

- The impact of it is incredible, would love to learn more.
- + I love the Pis! Wonderfully motivating. Gets students closer to the hardware and powerful enough to motivate studying parallelism.
- + Not having to have an expensive system to try this on is really motivating.
- I think it's easier on a workstation.
- + I am already very motivated because I plan to teach the course . . . But my expectation is using an inexpensive system will motivate the STUDENTS to do so and I am really interested in how much of that is true.

Conclusions

- Single board computers such as the Raspberry Pi promote "hands-on experiential" learning for parallel computing.
 - All our materials (including Pi image) are freely available online at: <u>csinparallel.org</u>.
 - Supports alternative laptop connection setup.
- SBCs offer a cost-effective way to teach students about especially multicore concepts.
 - Improvements in SoC technology will give rise to newer,

inexpensive SBCs.

Backup Slides

TeenTechNY

WPMS Hour of Code

