
csinparallel.org	

Using Map-Reduce to Teach 
Parallel Programming 

Concepts 

Dick Brown, St. Olaf College	
Libby Shoop, Macalester College 

Joel Adams, Calvin College	



csinparallel.org	

Workshop	site	

	
CSinParallel.org	->	Workshops	->	WMR	Workshop	
	
See	also	workshop	handout	



csinparallel.org	

Introductory	comments	

– Role	of	undergraduate	researchers:		There	
would	be	no	workshop	without	them!			

– Thanks	to	Amazon	Web	Services	for	providing	
credits	to	host	our	WMR	instance	

– Disclaimer:		We	are	not	proposing	map-reduce	
as	the	only	approach	to	introducing	parallelism,	
concurrency	

– A	value:		Honor	thy	neighbor's	curricular	
approach	



csinparallel.org	

Goals	

–  Introduce	map-reduce	compuLng,	using	the	
WebMapReduce	(WMR)	simplified	interface	to	
Hadoop	

• Why	use	map-reduce	in	the	curriculum?	

– Hands-on	exercises	with	WMR	for	foundaLon	
courses	



csinparallel.org	

Goals	

Part	1	–	IntroducLon	
– Map-reduce	compuLng,	and	the	WebMapReduce	
(WMR)	simplified	interface	to	Hadoop	

– Hands-on	exercises	with	WMR	for	foundaLon	
courses	

Part	2	–	Teaching	with	WMR	
– Why	use	map-reduce	in	the	curriculum?	
– Use	of	WMR	for	intermediate	and	advanced	courses	
– Hands-on	exercises	for	more	advanced	use	

Part	3	(opLonal)	–	What’s	under	the	hood?	



csinparallel.org	

Sneak	Preview:	Materials	available	

	
(In	case	you	already	know	your	map-reduce…)	

•  CSinParallel	module:		Map-reduce	Compu;ng	
for	Introductory	Students	using	
WebMapReduce	
– See	csinparallel.org 



csinparallel.org	

Part	1:		IntroducLon	to		
Map-Reduce	CompuLng	and	WMR	



csinparallel.org	

IntroducLon	to	Map-Reduce	
CompuLng	



csinparallel.org	

History	

– The	computaLonal	model	of	using	map	and	
reduce	operaLons	was	developed	decades	ago,	
for	LISP	

– Google	developed	MapReduce	system	for	search	
engine,	published	(Dean	and	Ghemawat,	2004)	

– Yahoo!	created	Hadoop,	an	open-source	
implementaLon	(under	Apache);		Java	mappers	
and	reducers	



csinparallel.org	

Map-Reduce:		The	2-minute	overview	

What	if	you	wanted	to		
count	the	frequencies	of	all	words	

in	1,000,000	books?	



csinparallel.org	

Map-Reduce:		The	2-minute	overview	

What	if	you	wanted	to		
count	the	frequencies	of	all	words	

in	1,000,000	books?	

1.  Break	up	the	lines	of	text:			
generate	one	labelled	piece	per	word	

•  Use	that	word	as	label;		value	1	for	each	piece	

2.  Group	the	pieces	according	to	label	(word)	
3.  Add	up	the	1’s	in	each	group	



csinparallel.org	

Map-Reduce	Concept	



csinparallel.org	

The	map-reduce	computaLonal	model	
•  Map-reduce	is	a	two-stage	process	with	a	"shuffle	twist"	

between	the	stages.	

•  Stages	are	controlled	by	funcLons:		mapper()	,		reducer()	



csinparallel.org	

The	map-reduce	computaLonal	model	

•  mapper()	funcLon:		
– Argument	is	one	line	of	input	from	a	file	
–  Produces	(key,	value)	pairs	

•  Example:		word-count	mapper()	
	
"the	cat	in	the	hat”	
									-->																																		[mapper	for	this	line]	
("the",	"1"),	("cat",	"1"),	("in",	"1"),		
("the",	"1"),	("hat",	"1")	



csinparallel.org	

The	map-reduce	computaLonal	model	

•  Shuffle	stage:			
– group	all	mappers’	(key,	value)	pairs	together	
that	have	the	same	key,	and	feed	each	group	to	
its	own	call	of	reduce()		

–  Input:		all	(key,value)	pairs	from	all	mappers	
– Output:		Those	pairs	rearranged,	sent	to	calls	of	
reduce()	according	to	key		

•  Note:		Shuffle	also	sorts	(opLmizaLon)	



csinparallel.org	

The	map-reduce	computaLonal	model	

•  reducer()	funcLon:		
– Receives	all	key-value	pairs	for	one	key	
– Produces	an	aggregate	result	

•  Example:		word-count	reducer()		
	
	("the",	"1"),	("the",	"1")			
					-->																																						[reducer	for	"the"]	
("the",	"2")	



csinparallel.org	

The	map-reduce	computaLonal	model	

–  In	map-reduce,	a	programmer	codes	only	two	
funcLons	(plus	config	informaLon)	

•  A	model	for	future	parallel-programming	frameworks	

– Underlying	map-reduce	system	reuses	code	for		
•  ParLLoning	the	data	into	chunks	and	lines,		
•  Runs	mappers/reducers	where	the	chunks	are	local	
•  Moving	data	between	mappers	and	reducers	
•  Auto-recovering	from	any	crashes	that	may	occur	
•  ...	

– OpLmized,	Distributed,	Fault-tolerant,	Scalable	



csinparallel.org	

The	map-reduce	computaLonal	model	

•  OpLmized,	Distributed,	Fault-tolerant,	Scalable	

1.	mappers	 2.	shuffle	 3.	reducers	
Local	
I/O	

Global	I/O	



csinparallel.org	

Demo	of	WMR	

cumulus.cs.stolaf.edu/wmr	
	

Intro	module	



csinparallel.org	

Materials	available	

•  CSinParallel	module:		Map-reduce	Compu;ng	
for	Introductory	Students	using	
WebMapReduce	
– See	csinparallel.org 



csinparallel.org	

Overview	of	suggested	exercises	

Available	on	the	csinparallel.org	site	

– Run	word	count	(provided),	with	small	and	large	
data	

– Modify,	run	variaLons	on	word	count:	strip	
punctuaLon;		case	insensiLve;		etc.	

– AlternaLve	exercises	



csinparallel.org	

AddiLonal	exercises	

Beyond	your	first	simple	exercises,	consider	
exploring	the	following:	
•  Various	data	sets	

– Note:	Please	avoid	large	Gutenberg	"groups"	for	
this	workshop	

•  Extended	set	of	exercises	for	CS1	(text	
analysis)	



csinparallel.org	

Hands-on	exploraLon	of	WMR	



csinparallel.org	

Part	2:		Teaching	with	WMR	

Why	map-reduce?	
Why	WMR?	

Teaching	WMR	in	CS1;		in	other	courses	



csinparallel.org	

Why	teach	map-reduce?	



csinparallel.org	

Why	map-reduce	for	teaching		noLons	of	
parallelism/concurrency?	

– Concepts:			
•  data	parallelism;			
•  task	parallelism;			
•  locality;			
•  effects	of	scale;		
•  example	effecLve	parallel	programming	model;		
•  distributed	data	with	redundancy	for	fault	
tolerance;		...	



csinparallel.org	

Why	map-reduce	for	teaching		noLons	of	
parallelism/concurrency?	

– Real-World:		Hadoop	widely	used	
– ExciLng:		the	appeal	of	Google,	Facebook,	etc.	
– Useful:			for	appropriate	applicaLons	
– Powerful:		scalability	to	large	clusters,	large	data	



csinparallel.org	

Why	WMR?	

–  Introduce	concepts	of	parallelism	
– Low	bar	for	entry,	feasible	for	CS1	(and	beyond)	
– Capture	the	imaginaLons	of	students	

•  Supports	rapid	introducLon	of	concepts	of	
parallelism	for	every	CS	student	
–  Intro	module	designed	for	1-3	days	of	class	



csinparallel.org	

WebMapReduce	(WMR)	

– Simplified	web	interface	for	Hadoop	
computaLons	

– Goals:	
•  Strategically	Simple	
	suitable	for	CS1,	but	not	a	toy	

•  Configurable	
write	mappers/reducers	in	any	language	

•  Accessible	web	applicaLon	
•  MulL-plamorm,	front-end	and	back-end	



csinparallel.org	

WMR	Features	(Briefly)	

– TesLng	interface	
•  Error	feedback		
•  Bypasses	Hadoop	--	small	data	only!	

–  	Students	enter	the	following	informaLon:	
•  choice	of	language	
•  data	to	process	
•  definiLon	of	mapper	in	that	language		
•  definiLon	of	reducer	in	that	language		



csinparallel.org	

WMR	system	informaLon	

– Languages	currently	supported:			
Java,	C++,	Python,	Scheme,	C,	C#,	Javascript	

•  R	coming	soon	

– Back	ends	to	date:			
local	cluster,	Amazon	EC2	cloud	images	

•  Version	limits	and	more	back	ends	coming	soon	

More	details	about	the	system	in	(opLonal)	Part	3	
of	the	workshop	



csinparallel.org	

Teaching	map-reduce	with	WMR	in	
the	introductory	sequence	



csinparallel.org	

KinestheLc	student	acLvity	
•  VisualizaLons	of	map-reduce	computaLons	are	
enough	for	some	students,	but	not	all	
	

•  An	in-class	ac/vity	to	act	out	the	map/shuffle/reduce	
process	helps	others	

•  Also	helpful:		images	of	clusters;	sequenLal	versions;		
context	of	well-known	web	services	



csinparallel.org	

WMR	in	advanced	courses	

Example:		PDC	elecLve	
•  CS1	module	
•  Map-reduce	programming	techniques	

– Features	of	WMR	
– Context	forwarding	
– Structured	values;		structured	keys	
– Mul;-case	mappers;	mul;-case	reducers	
– Broadcas;ng	data	values	



csinparallel.org	

Examples	for	Text	Processing	Techniques	

•  Combining	data	within	a	mapper	
–  Mapper:	Tally	counts	of	words	before	sending	to	reducer	

•  ComputaLonal	linguisLcs:		
–  words	that	are	co-located	

•  Find	and	count	pairs	
Example	In:			the	cat	in	the	cat	hat	
Emits:					
	1			cat|in	
	1			in|the	
	1			cat|hat	
	2			the|cat	

•  Use	combining	procedure	to	find	‘stripes’	
Example	In:					the	cat	and	the	dog	fought	over	the	dog	bone	
Emits:		(the,	{cat:1,	dog:2}	

Thanks	to:	
	Data	Intensive	Text	Processing,	by	Jimmy	Lin	and	Chris	Dyer	



csinparallel.org	

ApplicaLon	ideas	

•  Examples	in	the	introductory	module	
•  Big	data	sets	people	care	about	

•  Especially	for	unstructured	data	
•  Convenient	for	certain	kinds	of	projects	

– E.g.,	most	common	medical	terminology	



csinparallel.org	

WMR	Hands-on,	conLnued	
Module	exercises	
Extended	exercise	set	
Data	sets	available	
	/shared/MovieLens2/movieRaLngs	
	/shared/gutenberg/WarAndPeace.txt	
	/shared/gutenberg/CompleteShakespeare.txt	
		

	
	



csinparallel.org	

Part	3:		What’s	under	the	hood	



csinparallel.org	

About	WMR	

•  WMR	and	its	architecture	

•  Obtaining	and	installing	WMR	
– WebMapReduce.sf.com	

Cluster		
Head		
Node	
	

Web	
Server	

	

User	
Browser	

User	
Browser	

Cluster	
	



csinparallel.org	
Basic		

Hadoop	components	
•  Internals:	

–  Job	management	(per	cluster)	
– Task	management	(per	computaLon	node)	

•  Some	components	visible	to	the	user:	
– Hadoop	API	–	Java,	or		
arbitrary	executables	(“Streaming”)	

– Hadoop	Distributed	File	System	(HDFS)	
– Support	tools,	including	hadoop command	
– Limited	job	monitoring…		



csinparallel.org	

Goals	

–  Introduce	map-reduce	compuLng,	using	the	
WebMapReduce	(WMR)	simplified	interface	to	
Hadoop	

• Why	use	map-reduce	in	the	curriculum?	
– Hands-on	exercises	with	WMR	for	foundaLon	
courses	

– Use	of	WMR	for	intermediate	and	advanced	
courses	

• What’s	under	the	hood	with	WMR	
•  A	peek	at	Hadoop…	

– Hands-on	exercises	for	more	advanced	use	



csinparallel.org	

WMR	in	advanced	courses	



csinparallel.org	

InverLng	
"Chapter	1:	Call	me	Ishmael.		Some	…”	
"Chapter	2:	I	stuffed	a	shirt	or	two	..."		
"Chapter	3:	Entering	that	gable-ended	...”	
	

										-->																																																																								[mapper]	
	
("call",	"1"),	("me",	"1"),	...,	("i",	"2"),	
("stuffed”,	"2"),	...,	("entering",	"3"),	...	
	

	 	 		-->																																																																								[reducer]	

	"a"		"1,1,1,1,...,2,2,2,..."	
	"aback"		"3,7,7,8,...”	
	...	



csinparallel.org	

When	is	map-reduce	appropriate?	

•  Massive,	unstructured	or	irregularly	structured	
“big	data”	(Terascale	and	upward)	
– Raw	text	
– Web	pages	
– XML	
– Unstructured	streams	of	data	

•  Other	approaches	may	fit	structured	“big	data”	
– Scalable	databases	
– Large-scale	staLsLcal	approaches	



csinparallel.org	

Using	Hadoop	directly	(Java)	

WordCount.java	example	



csinparallel.org	

Direct	Hadoop	Examples	

•  Word	count	
–  Java	



csinparallel.org	

Quick	quesLons/comments	so	far?	



csinparallel.org	

Hands-on	



csinparallel.org	

Overview	of	suggested	exercises	

– ComputaLons	with	MovieLens2	data;	
mulLple	map-reduce	cycles	

– Traffic	data	analysis	
– Network	analysis	using	Flixter	data	
– The	Million	Song	dataset	



csinparallel.org	

Discussion	



csinparallel.org	

EvaluaLons!	

Links	at:	
				CSinParallel.org	->	Workshops	->	WMR	Workshop	
(end	of	the	page)	

	



csinparallel.org	

Some	consideraLons	with	Hadoop	

– Numbers	of	mappers	and	reducers	
– DFS	
– Fault	tolerance	
–  I/O	formats		

– Note:	we	have	further	slides	with	addiLonal	
informaLon	about	these	aspects,	for	you	to	look	
at	on	your	own.	



csinparallel.org	

Direct	Hadoop	exercise	setup	

– Edit	your	own	files,	locally	
– scp	to	cluster's	admin	node	(on	cloud)	
– ssh	to	compile,	launch	job	
– Percentage	progress	output	is	provided	
– MulLple	cycle	support	via	DFS	
–  (Cleanup)	



csinparallel.org	

AddiLonal	Details	about	Hadoop	



csinparallel.org	

The	hadoop	project	documentaLon	

•  h}p://hadoop.apache.org/common/docs/
current/index.html	



csinparallel.org	

How	many	mappers?	

•  The	Hadoop	Map/Reduce	framework	spawns	
one	mapper	task	for	each	InputSplit	
generated	by	the	InputFormat	for	the	job.	

•  The	number	of	mappers	is	usually	driven	by	
the	total	size	of	the	inputs,	that	is,	the	total	
number	of	blocks	of	the	input	files.	



csinparallel.org	

How	many	reducers?	

•  The	number	of	reducers	for	the	job	is	set	by	
the	user	via	
JobConf.setNumReduceTasks(int)	

•  The	size	of	your	eventual	output	may	dictate		
how	many	reducers	you	choose.	



csinparallel.org	

HDFS	

•  Fault-tolerant	distributed	file	system	modeled	
a~er	the	Google	File	System	
– we've	had	students	read	the	original	GFS	paper	in	an	
advanced	course	

•  h}p://hadoop.apache.org/hdfs/docs/current/
index.html	

•  Note	the	secLon	about	the	file	system	
commands	you	can	run	from	the	command	line:	
hadoop	fs	-ls	
Hadoop	fs	-get						or				-put	



csinparallel.org	

HDFS	AssumpLons	and	Goals	

•  Hardware	failure	
–  Hardware	failure	is	the	norm	rather	than	the	excepLon.		

•  Streaming	data	access	
–  ApplicaLons	that	run	on	HDFS	need	streaming	access	to	
their	data	sets.	They	are	not	general	purpose	
applicaLons	that	typically	run	on	general	purpose	file	
systems.		

•  Large	Data	Sets	
•  Simple	coherency	model	

–  Read	many,	write	once		
•  Moving	computaLons	is	simpler	than	moving	data	
•  Portability	across	various	hardware/so~ware		



csinparallel.org	



csinparallel.org	



csinparallel.org	

Input/Output	formats	

–  Input	into	mappers	are	interpreted	using	classes	
implemenLng	the	interface	InputFormat,	and	out	
put	from	reducers	are	implemented	using	classes	
implemenLng	the	interface	OutputFormat.	

–  In	WMR,	the	mapper	input	and	reducer	output	is	
performed	with	key-value	pairs.		This	corresponds	to	
using	the	classes	KeyValueTextInputFormat	and	
TextOutputFormat.	

–  In	direct	Hadoop,	the	default	input	format	is	
TextInputFormat,	in	which	values	are	lines	of	the	file	
and	keys	are	posiLons	within	that	file.	



csinparallel.org	

Some	further	features	of	Hadoop	

– Combiner,	an	opLmizaLon:		
perform	some	"reducLon"	during	the	map	
phase,	a~er	mapper()	and	before	shuffle	

– SorLng	control		
•  Note:		hard	to	sort	on	secondary	key		

– Three	programming	interfaces:		Java;	pipes	(C+
+);		streaming	(executables)	



csinparallel.org	

Page	rank	algorithm	ideas	

•  Original	data:		one	web	page	per	line	

–  mapper	produces	("dest",		"1/k	Pn")	for	each	link	in	page	
Pn		
where	k	links	appear	within	that	page	Pn	
	
reducer	produces	("dest",		"weight_0	P1	P2	P2	P3	P4	...")	
where	weight	is	sum	of	the	weights	from	key	value	pairs	
emi}ed	by	P1,	P2,	...	

–  Subsequent	mappers	and	reducers	produce	refined	
weights	that	take	into	account	deeper	chains	of	pages	
poinLng	to	pages	

–  Final	reducer	delivers	("dest",		"weight_k")							[drop	Pns]	


