
CUDA Thread assignment

It’s all about data decomposition
CUDA and GPGPU in general is best for large amounts of data where many
threads can execute and compute quite a bit of calculations in parallel

We arrange our data in 1, 2, or 3 dimensions, depending on the problem

So CUDA designers enabled a complicated, yet natural way to map the
decomposition of the threads to the data

1-D Data

1-D array of data

1-D Data, 1-D Grid with 1-D blocks

1-D array of data

1 x 1 Grid

1-D Data, 1-D Grid with 1-D blocks

1-D array of data

1 x 1 Grid

1 x 1 Block

1-D Data, 1-D Grid with 1-D blocks

1-D array of data

1 x N Grid

1 x 1 Block

1-D Data, 1-D Grid with 1-D blocks

1-D array of data

1 x N Grid of Blocks

1 x T Blocks of Threads

2-D Data, 1-D Grid, 1-D Blocks

2-D array of data

1 x N Grid of Blocks

1 x T Blocks of Threads

2-D Data, 1-D Grid, 2-D Blocks

2-D array of data

1 x N Grid of Blocks

X x Y Blocks of Threads

2-D Data, 1-D Grid, 2-D Blocks

2-D array of data

1 x N Grid of Blocks

X x Y Blocks of Threads

2-D Data, 1-D Grid, 2-D Blocks

2-D array of data

1 x N Grid of Blocks

X x Y Blocks of Threads

2-D Data, 2-D Grid, 2-D Blocks

2-D array of data

2 x N Grid of Blocks

X x Y Blocks of Threads

3-D Data, 1,2,3-D Grid, 1,2,3-D Blocks

3-D array of data

3-D Data, 1,2,3-D Grid, 1,2,3-D Blocks

3-D array of data

1-D Grid of 3-D blocks is one possibility

3-D Data, 1,2,3-D Grid, 1,2,3-D Blocks

3-D array of data

2-D Grid of 3-D blocks is one possibility

Thread id calculation

3-D array of data

1-D Grid of 3-D blocks is one possibility

Threads numbered along X direction first

80

Thread id calculation

3-D array of data

1-D Grid of 3-D blocks is one possibility

Threads numbered along X direction first, then Y

8
17

26

0

Thread id calculation

3-D array of data

1-D Grid of 3-D blocks is one possibility

Threads numbered along X direction first, then Y, then Z

8
17

27 26

54 53

80

0

Setting the Grid of Blocks
__global__ void Func(float* parameter)

must be called like this:
 Func<<< Dg, Db, Ns >>>(parameter)

Where Dg, Db, Ns are :
Dg is of type dim3, dimension and size of the grid [up to 3 dimensions]

 Dg.x * Dg.y = number of blocks being launched if 2 dimensions

Db is of type dim3, dimension and size of each block

 Db.x * Db.y * Db.z = number of threads per block;

Ns is of type size_t, number of bytes in shared memory that is dynamically
allocated in addition to the statically allocated memory
Ns is an optional argument which defaults to 0.

use of dim3
For 2-D data, we might decide on something like this:

dim3 grid(512); // 512 x 1 x 1

dim3 block(1024, 1024); // 1024 x 1024 x 1

fooKernel<<< grid, block >>>();

● Not all the 3 elements need to be provided. Any element not provided during
initialization is initialized to 1. Please note that they are initialized to 1, not 0!

