
General Purpose GPU programming  
(GP-GPU)  

with Nvidia CUDA 

Libby Shoop 
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What is (Historical) GPGPU ? 
•  General Purpose computation using GPU and graphics API in 

applications other than 3D graphics 
–  GPU accelerates critical path of application 

•  Data parallel algorithms leverage GPU attributes 
–  Large data arrays, streaming throughput 
–  Fine-grain SIMD parallelism  

•  sometimes also referred to as SIMT, emphasizing the threads 

–  Low-latency floating point (FP) computation 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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What is (Historical) GPGPU ? 

•  Applications – see GPGPU.org, GPU Gems 
–  Game effects (FX) physics, image processing 
–  Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting 
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CUDA 
•  “Compute Unified Device Architecture” 
•  General purpose programming model 

–  User kicks off batches of threads on the GPU 
–  GPU = dedicated super-threaded, massively data parallel co-processor 

•  Targeted software stack 
–  Compute oriented drivers, language, and tools 

•  Driver for loading computation programs into GPU 
–  Standalone Driver - Optimized for computation  
–  Interface designed for compute – graphics-free API 
–  Data sharing with OpenGL buffer objects  
–  Guaranteed maximum download & readback speeds 
–  Explicit GPU memory management 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!



9 

Parallel Computing on a GPU: 
First Generation  

•  8-series GPUs deliver 25 to 200+ GFLOPS 
on compiled parallel C applications 
–  Available in laptops, desktops, and clusters 

•  GPU parallelism is doubling every year 
•  Programming model scales transparently 

•  Programmable in C with CUDA tools 
•  Multithreaded SPMD model uses application  

data parallelism and thread parallelism 

GeForce 8800 

Tesla S870 

Tesla D870 
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New server: wulver 
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2 GPU Cards:!
!
GTX 770!
    Kepler Architecture!
    Compute capability 3.0!
!
!
!
GTX 970!
    Maxwell Architecture!
    Compute capability 5.2!



GTX 770 Kepler 
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GPU architecture evolution: Maxwell 
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Architecture:  TK1 Keppler 

13 

192 cores!
!
On 1 SMX:!
“streaming!
Multiprocessor”!
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CUDA Devices and Threads 

•  A compute device 
–  Is a coprocessor to the CPU or host 
–  Has its own DRAM (device memory)‏ 
–  Runs many threads in parallel 
–  Is typically a GPU but can also be another type of  parallel processing 

device  

•  Data-parallel portions of an application are expressed as device 
kernels which run on many threads 

•  Differences between GPU and CPU threads  
–  GPU threads are extremely lightweight 

•  Very little creation overhead 
–  GPU needs 1000s of threads for full efficiency 

•  Multi-core CPU needs only a few 
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CUDA – C 
•  Integrated host+device app C program 

–  Serial or modestly parallel parts in host C code 
–  Highly parallel parts in device SPMD kernel C code 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 
KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 
KernelB<<< nBlk, nTid >>>(args); 
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Extended C 

•  Type Qualifiers 
–  global, device, shared, 

local, constant 

•  Keywords 
–  threadIdx, blockIdx 

•  Intrinsics 
–  __syncthreads 

•  Runtime API 
–  Memory, symbol, 

execution management 

•  Function launch 

__device__ float filter[N];  
 
__global__ void convolve (float *image)  { 
 
  __shared__ float region[M]; 
  ...  
 
  region[threadIdx] = image[i];  
 
  __syncthreads()   
  ...  
 
  image[j] = result; 
} 
 
// Allocate GPU memory 
void *myimage = cudaMalloc(bytes) 
 
 
// 100 blocks, 10 threads per block 
convolve<<<100, 10>>> (myimage); 
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nvcc   compiler 
•  Special compiler that creates ‘device’ code and ‘host’ 

code 

/usr/local/cuda/bin/nvcc threadID.cu -o threadID -arch=sm_20 

–  The –arch  will allow you to create code for each type of 
“compute level” 

•  See the nVIDIA developer documentation 
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Arrays of Parallel Threads 

•  A CUDA kernel is executed by an array of 
threads 
–  All threads run the same code (SPMD)‏ 
–  Each thread has an ID that it uses to compute 

memory addresses and make control decisions 
 76543210

… 
float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 
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… 
float x = 
input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 

Thread Block 0 

… 
… 
float x = 
input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

Thread Block 1 

… 
float x = 
input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

Thread Block N - 1 

Thread Blocks: Scalable Cooperation 

•  Divide monolithic thread array into multiple blocks 
–  Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization 
–  Threads in different blocks cannot cooperate 

76543210 76543210 76543210
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CUDA API Highlights: 
Easy and Lightweight 

•  The API is an extension to the ANSI C programming 
language 
           Low learning curve 

 
•  The hardware is designed to enable lightweight 

runtime and driver 
           High performance 
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs 
original architectures 

 
•  Each thread uses IDs to decide 

what data to work on 
–  Block ID: 1D or 2D 
–  Thread ID: 1D, 2D, or 3D  

•  Simplifies memory 
addressing when processing 
multidimensional data 
–  Image processing 
–  Solving PDEs on volumes 
–  … 
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Assigning grids, blocks of threads 

•  Obtaining a thread’s ID depends on layout chosen 
•  The complicated aspect of CUDA programming 
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Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.
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CUDA Memory Model Overview 
•  Global memory 

–  Main means of 
communicating R/W 
Data between host and 
device 

–  Contents visible to all 
threads 

–  Long latency access 

•  We will focus on global 
memory for now 

Grid 

Global Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory Allocation 

•  cudaMalloc() 
– Allocates object in the 

device Global Memory 
– Requires two parameters 

•  Address of a pointer to the 
allocated object 

•  Size of of allocated object 

•  cudaFree() 
– Frees object from device 

Global Memory 
•  Pointer to freed object 

Grid 

Global 
Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory Allocation (cont.)‏ 

•  Code example:  
– Allocate a  64 * 64 single precision float array 
– Attach the allocated storage to Md 
–  “d” is often used to indicate a device data structure 

TILE_WIDTH = 64; 
Float* Md 
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 

 
cudaMalloc((void**)&Md, size); 
cudaFree(Md); 
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CUDA Host-Device Data Transfer 

•  cudaMemcpy() 
–  memory data transfer 
–  Requires four parameters 

•  Pointer to destination  
•  Pointer to source 
•  Number of bytes copied 
•  Type of transfer  

–  Host to Host 
–  Host to Device 
–  Device to Host 
–  Device to Device 

•  Asynchronous transfer 

Grid 

Global 
Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Host-Device Data Transfer 
(cont.) 

•  Code example:  
–  Transfer a  64 * 64 single precision float array 
–  M is in host memory and Md is in device memory 
–  cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic constants 
 
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost); 
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CUDA Keywords 
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CUDA Function Declarations 

host host __host__   float HostFunc()‏ 

host device __global__ void  KernelFunc()‏ 

device device __device__ float DeviceFunc()‏ 

Only callable 
from the: 

Executed 
on the: 

•   __global__ defines a kernel function 
–  Must return void 

•   __device__ and __host__ can be used 
together 
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Calling a Kernel Function – Thread Creation 
•  A kernel function must be called with an execution 

configuration: 
 

__global__ void KernelFunc(...); 

dim3   DimGrid(100, 50);    // 5000 thread blocks  

dim3   DimBlock(4, 8, 8);   // 256 threads per block  

size_t SharedMemBytes = 64; // 64 bytes of shared 
memory 

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes 
>>>(...); 

•  Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking 
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Grids, Blocks, and Threads 

•  Separate presentation 
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A Simple Running Example 
Matrix Multiplication 

•  A simple matrix multiplication example that illustrates 
the basic features of memory and thread management 
in CUDA programs 
–  Leave shared memory usage until later 
–  Local, register usage 
–  Thread ID usage 
–  Memory data transfer API between host and device 
–  Assume square matrix for simplicity 
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Programming Model: 
Square Matrix Multiplication Example 

•  P = M * N of size WIDTH x WIDTH 

•  Without tiling: 
–  One thread calculates one element of P 
–  M and N are loaded WIDTH times from 

global memory 

M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 
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M0,2!

M1,1!

M0,1!M0,0!

M1,0!

M0,3!

M1,2! M1,3!

Memory Layout of a Matrix in C 

M0,2!M0,1!M0,0! M0,3! M1,1!M1,0! M1,2! M1,3! M2,1!M2,0! M2,2! M2,3!

M2,1!M2,0! M2,2! M2,3!

M3,1!M3,0! M3,2! M3,3!

M3,1!M3,0! M3,2! M3,3!

M!
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Step 1: Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix multiplication on the (CPU) host in double 
precision!
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
 

i!

k!

k!

j!
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 
{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd;!
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 
 
     // Allocate P on the device 
    cudaMalloc(&Pd, size); 
 

Step 2: Input Matrix Data Transfer 
(Host-side Code)‏ 
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Step 3: Output Matrix Data Transfer 
(Host-side Code)‏ 

2.   // Kernel invocation code – to be shown later!
     …!
!
3.    // Read P from the device!
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
       // Free device matrices!
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
     }!
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Step 4: Kernel Function 

// Matrix multiplication kernel – per thread code 
 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 
{ 
     
    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
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Nd 

Md Pd 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

Step 4: Kernel Function  (cont.)‏ 
 
   for (int k = 0; k < Width; ++k)‏ { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 
 
  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
 ty!

tx!

ty!

tx!

k!

k!
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    // Setup the execution configuration 
       dim3 dimGrid(1, 1); 
       dim3 dimBlock(Width, Width); 
 
 
    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Step 5: Kernel Invocation 
(Host-side Code)  
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Only One Thread Block Used 

•  One Block of threads compute 
matrix Pd 

–  Each thread computes one 
element of Pd 

•  Each thread 
–  Loads a row of matrix Md 
–  Loads a column of matrix Nd 
–  Perform one multiply and 

addition for each pair of Md and 
Nd elements 

–  Compute to off-chip memory 
access ratio close to 1:1 (not very 
high)‏ 

•  Size of matrix limited by the 
number of threads allowed in a 
thread block 
 

 Grid 1 
Block 1 

3 2 5 4

2

4

2

6

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 
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Step 7: Handling Arbitrary Sized Square 
Matrices 

•  Have each 2D thread block to compute 
a (TILE_WIDTH)2 sub-matrix (tile) of 
the result matrix 
–  Each has (TILE_WIDTH)2 threads 

•  Generate a 2D Grid of (WIDTH/
TILE_WIDTH)2 blocks 

 
 

Md 

Nd 

Pd 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

ty!

tx!

by!

bx!

You still need to put a loop 
around the kernel call for 
cases where WIDTH/
TILE_WIDTH is greater 
than max grid size (64K)!!

TILE_WIDTH!
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Some Useful Information on Tools 
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Compiling a CUDA Program 

NVCC 

C/C++ CUDA 
Application 

PTX to Target 
Compiler 

 G80    …     GPU  

Target code 

PTX Code Virtual 

Physical 

CPU Code 

•  Parallel Thread 
eXecution (PTX)‏ 
–  Virtual Machine 

and ISA 
–  Programming 

model 
–  Execution 

resources and 
state 

float4 me = gx[gtid]; 
me.x += me.y * me.z; 

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0]; 
mad.f32           $f1, $f5, $f3, $f1; 
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Compilation 

•  Any source file containing CUDA language 
extensions must be compiled with NVCC 

•  NVCC is a compiler driver 
–  Works by invoking all the necessary tools and 

compilers like cudacc, g++, cl, ... 
•  NVCC outputs: 

–  C code (host CPU Code)‏ 
•  Must then be compiled with the rest of the application using another tool 

–  PTX 
•  Object code directly 
•  Or, PTX source, interpreted at runtime 
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Linking 

•  Any executable with CUDA code requires two 
dynamic libraries: 
–  The CUDA runtime library (cudart)‏ 
–  The CUDA core library (cuda)‏ 
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Debugging Using the 
Device Emulation Mode 

•  An executable compiled in device emulation mode 
(nvcc -deviceemu) runs completely on the host 
using the CUDA runtime 
–  No need of any device and CUDA driver 
–  Each device thread is emulated with a host thread 
 

•  Running in device emulation mode, one can: 
–  Use host native debug support (breakpoints, inspection, etc.)‏ 
–  Access any device-specific data from host code and vice-versa 
–  Call any host function from device code (e.g. printf) and vice-

versa 
–  Detect deadlock situations caused by improper usage of 

__syncthreads 
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Device Emulation Mode Pitfalls 
•  Emulated device threads execute sequentially, so 

simultaneous accesses of the same memory location 
by multiple threads could produce different results. 

•  Dereferencing device pointers on the host or host 
pointers on the device can produce correct results in 
device emulation mode, but will generate an error in 
device execution mode 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!



54 

Floating Point 

•  Results of floating-point computations will slightly 
differ because of: 
–  Different compiler outputs, instruction sets 
–  Use of extended precision for intermediate results 

•  There are various options to force strict single precision on the host 
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