
General Purpose GPU programming
(GP-GPU)

with Nvidia CUDA

Libby Shoop

3

4

What is (Historical) GPGPU ?
•  General Purpose computation using GPU and graphics API in

applications other than 3D graphics
–  GPU accelerates critical path of application

•  Data parallel algorithms leverage GPU attributes
–  Large data arrays, streaming throughput
–  Fine-grain SIMD parallelism

•  sometimes also referred to as SIMT, emphasizing the threads

–  Low-latency floating point (FP) computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

5

What is (Historical) GPGPU ?

•  Applications – see GPGPU.org, GPU Gems
–  Game effects (FX) physics, image processing
–  Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

7

CUDA
•  “Compute Unified Device Architecture”
•  General purpose programming model

–  User kicks off batches of threads on the GPU
–  GPU = dedicated super-threaded, massively data parallel co-processor

•  Targeted software stack
–  Compute oriented drivers, language, and tools

•  Driver for loading computation programs into GPU
–  Standalone Driver - Optimized for computation
–  Interface designed for compute – graphics-free API
–  Data sharing with OpenGL buffer objects
–  Guaranteed maximum download & readback speeds
–  Explicit GPU memory management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

9

Parallel Computing on a GPU:
First Generation

•  8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
–  Available in laptops, desktops, and clusters

•  GPU parallelism is doubling every year
•  Programming model scales transparently

•  Programmable in C with CUDA tools
•  Multithreaded SPMD model uses application

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

New server: wulver

10

2 GPU Cards:!
!
GTX 770!
 Kepler Architecture!
 Compute capability 3.0!
!
!
!
GTX 970!
 Maxwell Architecture!
 Compute capability 5.2!

GTX 770 Kepler

11

GPU architecture evolution: Maxwell

12

Architecture: TK1 Keppler

13

192 cores!
!
On 1 SMX:!
“streaming!
Multiprocessor”!

14

CUDA Devices and Threads

•  A compute device
–  Is a coprocessor to the CPU or host
–  Has its own DRAM (device memory)‏
–  Runs many threads in parallel
–  Is typically a GPU but can also be another type of parallel processing

device

•  Data-parallel portions of an application are expressed as device
kernels which run on many threads

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  Very little creation overhead
–  GPU needs 1000s of threads for full efficiency

•  Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

16

CUDA – C
•  Integrated host+device app C program

–  Serial or modestly parallel parts in host C code
–  Highly parallel parts in device SPMD kernel C code

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏
KernelB<<< nBlk, nTid >>>(args);

19

Extended C

•  Type Qualifiers
–  global, device, shared,

local, constant

•  Keywords
–  threadIdx, blockIdx

•  Intrinsics
–  __syncthreads

•  Runtime API
–  Memory, symbol,

execution management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

nvcc compiler
•  Special compiler that creates ‘device’ code and ‘host’

code

/usr/local/cuda/bin/nvcc threadID.cu -o threadID -arch=sm_20

–  The –arch will allow you to create code for each type of
“compute level”

•  See the nVIDIA developer documentation

20

22

Arrays of Parallel Threads

•  A CUDA kernel is executed by an array of
threads
–  All threads run the same code (SPMD)‏
–  Each thread has an ID that it uses to compute

memory addresses and make control decisions
 76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

23

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

•  Divide monolithic thread array into multiple blocks
–  Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization
–  Threads in different blocks cannot cooperate

76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

24

CUDA API Highlights:
Easy and Lightweight

•  The API is an extension to the ANSI C programming
language
 Low learning curve

•  The hardware is designed to enable lightweight

runtime and driver
 High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

25

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs
original architectures

•  Each thread uses IDs to decide

what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Assigning grids, blocks of threads

•  Obtaining a thread’s ID depends on layout chosen
•  The complicated aspect of CUDA programming

26

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

27

CUDA Memory Model Overview
•  Global memory

–  Main means of
communicating R/W
Data between host and
device

–  Contents visible to all
threads

–  Long latency access

•  We will focus on global
memory for now

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

28

CUDA Device Memory Allocation

•  cudaMalloc()
– Allocates object in the

device Global Memory
– Requires two parameters

•  Address of a pointer to the
allocated object

•  Size of of allocated object

•  cudaFree()
– Frees object from device

Global Memory
•  Pointer to freed object

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

29

CUDA Device Memory Allocation (cont.)‏

•  Code example:
– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md
–  “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

30

CUDA Host-Device Data Transfer

•  cudaMemcpy()
–  memory data transfer
–  Requires four parameters

•  Pointer to destination
•  Pointer to source
•  Number of bytes copied
•  Type of transfer

–  Host to Host
–  Host to Device
–  Device to Host
–  Device to Device

•  Asynchronous transfer

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

31

CUDA Host-Device Data Transfer
(cont.)

•  Code example:
–  Transfer a 64 * 64 single precision float array
–  M is in host memory and Md is in device memory
–  cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

32

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

33

CUDA Function Declarations

host host __host__ float HostFunc()‏

host device __global__ void KernelFunc()‏

device device __device__ float DeviceFunc()‏

Only callable
from the:

Executed
on the:

•  __global__ defines a kernel function
–  Must return void

•  __device__ and __host__ can be used
together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

35

Calling a Kernel Function – Thread Creation
•  A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

•  Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Grids, Blocks, and Threads

•  Separate presentation

36

37

A Simple Running Example
Matrix Multiplication

•  A simple matrix multiplication example that illustrates
the basic features of memory and thread management
in CUDA programs
–  Leave shared memory usage until later
–  Local, register usage
–  Thread ID usage
–  Memory data transfer API between host and device
–  Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

38

Programming Model:
Square Matrix Multiplication Example

•  P = M * N of size WIDTH x WIDTH

•  Without tiling:
–  One thread calculates one element of P
–  M and N are loaded WIDTH times from

global memory

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

39

M0,2!

M1,1!

M0,1!M0,0!

M1,0!

M0,3!

M1,2! M1,3!

Memory Layout of a Matrix in C

M0,2!M0,1!M0,0! M0,3! M1,1!M1,0! M1,2! M1,3! M2,1!M2,0! M2,2! M2,3!

M2,1!M2,0! M2,2! M2,3!

M3,1!M3,0! M3,2! M3,3!

M3,1!M3,0! M3,2! M3,3!

M!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

40

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double
precision!
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i!

k!

k!

j!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

41

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏
{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;!
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

42

Step 3: Output Matrix Data Transfer
(Host-side Code)‏

2. // Kernel invocation code – to be shown later!
 …!
!
3. // Read P from the device!
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
 // Free device matrices!
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
 }!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

43

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

44

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Step 4: Kernel Function (cont.)‏

 for (int k = 0; k < Width; ++k)‏ {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}
 ty!

tx!

ty!

tx!

k!

k!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

45

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

46

Only One Thread Block Used

•  One Block of threads compute
matrix Pd

–  Each thread computes one
element of Pd

•  Each thread
–  Loads a row of matrix Md
–  Loads a column of matrix Nd
–  Perform one multiply and

addition for each pair of Md and
Nd elements

–  Compute to off-chip memory
access ratio close to 1:1 (not very
high)‏

•  Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
)2, 2(‏

 WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

47

Step 7: Handling Arbitrary Sized Square
Matrices

•  Have each 2D thread block to compute
a (TILE_WIDTH)2 sub-matrix (tile) of
the result matrix
–  Each has (TILE_WIDTH)2 threads

•  Generate a 2D Grid of (WIDTH/
TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty!

tx!

by!

bx!

You still need to put a loop
around the kernel call for
cases where WIDTH/
TILE_WIDTH is greater
than max grid size (64K)!!

TILE_WIDTH!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

48

Some Useful Information on Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

49

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

 G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

•  Parallel Thread
eXecution (PTX)‏
–  Virtual Machine

and ISA
–  Programming

model
–  Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

50

Compilation

•  Any source file containing CUDA language
extensions must be compiled with NVCC

•  NVCC is a compiler driver
–  Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...
•  NVCC outputs:

–  C code (host CPU Code)‏
•  Must then be compiled with the rest of the application using another tool

–  PTX
•  Object code directly
•  Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

51

Linking

•  Any executable with CUDA code requires two
dynamic libraries:
–  The CUDA runtime library (cudart)‏
–  The CUDA core library (cuda)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

52

Debugging Using the
Device Emulation Mode

•  An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host
using the CUDA runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  Running in device emulation mode, one can:
–  Use host native debug support (breakpoints, inspection, etc.)‏
–  Access any device-specific data from host code and vice-versa
–  Call any host function from device code (e.g. printf) and vice-

versa
–  Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

53

Device Emulation Mode Pitfalls
•  Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location
by multiple threads could produce different results.

•  Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

54

Floating Point

•  Results of floating-point computations will slightly
differ because of:
–  Different compiler outputs, instruction sets
–  Use of extended precision for intermediate results

•  There are various options to force strict single precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

