
Parallel Puzzle-Solving
Joel C. Adams



Parallel Puzzle-Solving

• Unplugged activity that can be used in any course
• Simple version can be used to introduce shared-memory concepts
• More complex versions can be used for distributed-memory concepts
• Data-visualization can be used to explain Amdahl’s & Gustafson’s Laws



Setup: Children’s Puzzles (from Thrift Stores)

Puzzles’ sizes 
differ by 
factors of 10



Shared-Memory Parallel Exercise

1. Divide students into several “processor groups”
→ Single core, dual-core, quad-core, etc.
→ Number of groups and their sizes vary, depending on course enrollment

2. Give each group a puzzle
3. Repeat:

a. Ready-set-go! Start all groups and a timer simultaneously.
b. Time how long it takes each group to solve their puzzle (e.g., online-

stopwatch.com); record that time in a spreadsheet
c. Disassemble puzzles, rotate them among the groups, reset the timer

Until each group has solved each puzzle
4. Lead discussion of students’ experiences & observations

https://www.online-stopwatch.com/large-stopwatch/


Unicore
processor



Dual-core 
processor



Quad-core 
processor



Octa-core 
processor 

(minus two 
students so 
we can see 
the puzzle)



20
30

40
50

60

0

50

100

150

200

250

300

350

400

1 2 4a 4b 8

N 
(Puzzle Size)

Ti
m

e 
(s

ec
s)

P
(Number of Students)

Times for Different-Sized Groups to Finish Different-Sized Puzzles



Amdahl’s Law:
For fixed N, 
increasing P, 

speedup 
approaches 

asymptote of 
1/sequentialPartTime

Gustafson’s Law:
For fixed P, increasing N, 
Speedup approaches P 

20
30

40
50

60

0

0.5

1

1.5

2

2.5

3

3.5

2 4a 4b 8

N 
(Puzzle Size)

Sp
ee

du
p

P
(Number of Students)

Speedup for Different-Sized Groups Finishing Different-Sized Puzzles



Parallel “Laws”

Definition: SpeedupP = Time1 / TimeP

• Amdahl’s Law: Let Time1 = 1. For a problem of size N and increasing P:

SpeedupP(N) = !
!"#"$$%$&"#'()*%

& " #$%&$'()*+,*-(.)/$

As P→ ∞, SpeedupP(N) → !
#$%&$'()*+,*-(.)/$

• Gustafson’s Law: As N increases:
SpeedupP(N) = 𝑃 + 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑃𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ∗ (1 − 𝑃)
If sequentialPartTime→ 0 as N → ∞, then SpeedupP → 𝑃


