Parallel Puzzle-Solving



Parallel Puzzle-Solving

* Unplugged activity that can be used in any course

e Simple version can be used to introduce shared-memory concepts

* More complex versions can be used for distributed-memory concepts
* Data-visualization can be used to explain Amdahl’s & Gustafson’s Laws



Setup: Children’s Puzzles (from Thrift Stores)
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Shared-Memory Parallel Exercise

1. Divide students into several “processor groups”
— Single core, dual-core, quad-core, etc.
— Number of groups and their sizes vary, depending on course enrollment

2. Give each group a puzzle

3. Repeat:

a. Ready-set-go! Start all groups and a timer simultaneously.

b. Time how long it takes each group to solve their puzzle (e.g., online-
stopwatch.com); record that time in a spreadsheet

c. Disassemble puzzles, rotate them among the groups, reset the timer

Until each group has solved each puzzle

4. Lead discussion of students’ experiences & observations


https://www.online-stopwatch.com/large-stopwatch/
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Times for Different-Sized Groups to Finish Different-Sized Puzzles
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Speedup for Different-Sized Groups Finishing Different-Sized Puzzles

Gustafson’s Law:
For fixed P, increasing N,
Speedup approaches P

Amdahl’s Law:
For fixed N,
increasing P,
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Parallel “Laws”

Definition: Speedup, = Time, / Time,

* Amdahl’s Law: Let Time, = 1. For a problem of size N and increasing P:
1

+ sequentialPartTime

1
sequentialPartTime

SPEEdUpP(N) — parallelPartTime
P

As P — oo, Speedup,(N) —

* Gustafson’s Law: As N increases:
Speedup,(N) = P + sequentialPartTime * (1 — P)
If sequentialPartTime — 0 as N — oo, then Speedup, — P



