Parallel Puzzle-Solving
Joel C. Adams

Parallel Puzzle-Solving

- Unplugged activity that can be used in any course
- Simple version can be used to introduce shared-memory concepts
- More complex versions can be used for distributed-memory concepts
- Data-visualization can be used to explain Amdahl's \& Gustafson's Laws

Setup: Children's Puzzles (from Thrift Stores)

Puzzles' sizes differ by factors of 10

Shared-Memory Parallel Exercise

1. Divide students into several "processor groups"
\rightarrow Single core, dual-core, quad-core, etc.
\rightarrow Number of groups and their sizes vary, depending on course enrollment
2. Give each group a puzzle
3. Repeat:
a. Ready-set-go! Start all groups and a timer simultaneously.
b. Time how long it takes each group to solve their puzzle (e.g., onlinestopwatch.com); record that time in a spreadsheet
c. Disassemble puzzles, rotate them among the groups, reset the timer

Until each group has solved each puzzle
4. Lead discussion of students' experiences \& observations

Unicore processor

Dual-core processor

Quad-core processor

Times for Different-Sized Groups to Finish Different-Sized Puzzles

Speedup for Different-Sized Groups Finishing Different-Sized Puzzles

Parallel "Laws"

Definition: Speedup $_{P}=$ Time $_{1} /$ Time $_{P}$

- Amdahl's Law: Let Time ${ }_{1}=1$. For a problem of size N and increasing P :
$\operatorname{Speedup}_{P}(N)=\frac{1}{\frac{\text { parallelPartTime }}{P}+\text { sequentialPartTime }}$
As $P \rightarrow \infty$, Speedup $_{P}(N) \rightarrow \frac{1}{\text { sequentialPartTime }}$
- Gustafson's Law: As N increases:

Speedup $_{P}(N)=P+$ sequentialPartTime $^{*}(1-P)$
If sequentialPartTime $\rightarrow 0$ as $N \rightarrow \infty$, then Speedup ${ }_{\mathrm{P}} \rightarrow P$

