Parallel Puzzle-Solving



Parallel Puzzle-Solving

* Unplugged activity that can be used in any course

e Simple version can be used to introduce shared-memory concepts

* More complex versions can be used for distributed-memory concepts
* Data-visualization can be used to explain Amdahl’s & Gustafson’s Laws



Setup: Children’s Puzzles (from Thrift Stores)

farﬂhA:mmj

~i = XOEN:

Puzzles’ sizes

differ by
factors of 10

1\ World Map Fun Fdcts

| “&(. Floor Puzzie

=

oF ;f(i ® -~




Shared-Memory Parallel Exercise

1. Divide students into several “processor groups”
— Single core, dual-core, quad-core, etc.
— Number of groups and their sizes vary, depending on course enrollment

2. Give each group a puzzle

3. Repeat:

a. Ready-set-go! Start all groups and a timer simultaneously.

b. Time how long it takes each group to solve their puzzle (e.g., online-
stopwatch.com); record that time in a spreadsheet

c. Disassemble puzzles, rotate them among the groups, reset the timer

Until each group has solved each puzzle

4. Lead discussion of students’ experiences & observations


https://www.online-stopwatch.com/large-stopwatch/

Unicore
processor




Dual-core
processor




Quad-core
processor




Octa-core
processor
(minus two
students so
we can see
the puzzle)



Times for Different-Sized Groups to Finish Different-Sized Puzzles

400

350

N W
& 8

Time (secs)
N
8

60

[N
Ul
o

50
40
30 N
20 (Puzzle Size)

3

Ul
o

o

1 2 4a 4b 8

P
(Number of Students)



Speedup for Different-Sized Groups Finishing Different-Sized Puzzles

Gustafson’s Law:
For fixed P, increasing N,
Speedup approaches P

Amdahl’s Law:
For fixed N,
increasing P,

speedup
approaches

asymptote of

20 1/sequentialPartTime
2 4a p 4b 8

(Number of Students)

50

40
N

(Puzzle Size)



|II

Parallel “Laws”

Definition: Speedup, = Time, / Time,

* Amdahl’s Law: Let Time, = 1. For a problem of size N and increasing P:
1

+ sequentialPartTime

1
sequentialPartTime

SPEEdUpP(N) — parallelPartTime
P

As P — oo, Speedup,(N) —

* Gustafson’s Law: As N increases:
Speedup,(N) = P + sequentialPartTime * (1 — P)
If sequentialPartTime — 0 as N — oo, then Speedup, — P



