
Injecting PDC
into the CS Curriculum

Joel Adams
Department of Computer Science

Calvin College



What Are The Key PDC Topics?
PDC != concurrency:
– Parallel emphasizes:
oThroughput / Performance (and timing)
oScalability (performance scales with # of threads)
oTopics like speedup, Amdahl’s Law

– Distributed emphasizes:
oMultiprocessing (no shared memory)
– MPI, MapReduce/Hadoop/Spark, BOINC, …

oCloud computing
oMobile apps accessing web services



Software: Communication Options
• Communicate via the shared-memory
– Languages: Java, C++11, …
– Libraries: POSIX threads, OpenMP

• Communicate via message passing
–Message-passing languages: Erlang, Scala, …
– Libraries: the Message Passing Interface (MPI)



ACM / IEEE CS2013 Curriculum
• The CS2013 core curriculum includes 15 hours 

of parallel & distr. computing (PDC) topics:
+5 hours in core Tier 1
+10 hours in core Tier 2
+ More parallel topics in System Fundamentals

• ABET criteria 5.a.3 requires “Exposure to … 
parallel and distributed [computing].”

• How/where do we cover these topics in the CS 
curriculum?



Model 1: Add a New Course
Add a new course to the CS curriculum that 
covers the core PDC topics:
+If someone else has to teach this new course, 

then PDC is their problem, not mine!
oBut what happens if that person leaves?

– Curriculum is already full!
oWhat course do we drop to make room?

– Students don’t see PDC applied consistently
o If early, they’ll likely forget much of it
o If late, the cognitive adjustment is much harder



Model 2: Across the Curriculum
Spread at least 15 hours (3 weeks) of PDC 
content across select core CS courses:
+Explore PDC in context of data structures, 

algorithms, prog. lang., OS, …
+Easier to add 1 week to a few courses than 

jettison an entire course.
+Spreads the effort across multiple faculty
– All those faculty have to be “on board”
oGetting faculty buy-in is the biggest challenge
– Use TCPP Early Adopter funding to provide “carrots” 



Model 2: Where to Start?
• CS1 would be ideal 

+ Supports “early and often”
–What do we eliminate to make room for PDC?
– Instructor buy-in a bigger challenge
oMany sections == many instructors

–Many students struggle with sequential CS1 
concepts and can’t see past syntax 
oHow will they master abstract PDC concepts?

? Perhaps limit to ”unplugged” PDC activities?



Calvin CS Curriculum
Year Fall Semester Spring Semester

1 Intro to Computing
Calculus I

Data Structures
Calculus II

2
Algorithms & DS
Intro. Comp. Arch.
Discrete Math I

Programming Lang.
Discrete Math II

3
Software Engr
Adv. Elective

OS & Networking
Adv. Elective
Statistics

4
Adv. Elective
Sr. Practicum I

Adv. Elective
Sr. Practicum II
Perspectives on Comp.

Data Structures
Calculus II
Programming Lang.
Discrete Math II

OS & Networking

Algorithms & DS
Intro. Comp. Arch.

Adv. Elective: HPC

Software Engr.



Why Introduce Parallelism in CS2?
• Performance (Big-Oh) is a topic that’s first 

addressed in CS2

• Data structures let us store large data sets
– Slow sequential processing of these sets 

provides a natural motivation for parallelism



Parallel Topics in CS2
• Lecture topics:
– Threads: Single threading vs. multithreading 
– The single-program-multiple-data (SPMD), 

fork-join, parallel loop, and reduction patterns
– Speedup, asymptotic performance analysis
– Race conditions: non-thread-safe structures
– Live-coding demos of these using the

patternlets



CS2 Lab Exercise Possibilities
Using OpenMP:
• Compare times of sequential vs. parallel 

operations on large matrix objects       
(e.g., addition, transpose)

OR

• Compare times of sequential vs parallel
image-processing operations (e.g., image
inversion, gray-scale, blur) using TSGL



Lab Exercise: Matrix Operations
Given a Matrix class, the students:

•Measure the time to perform sequential 
addition and transpose methods

•For each of three different approaches:
– Use the approach to parallelize those methods
– Record execution times in a spreadsheet
– Create a chart showing time vs # of threads

Students directly experience the benefits…



SIGCSE 2014 - 13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 6 8 10

Ti
m

e

Number of Threads

Matrix Addition vs. Transpose, 4 (8 HT) Cores
Addition Transpose



Addition: m3 = m1 + m2

+=

Single-threaded:

+=

Multi-threaded (4 threads):



Tranpose: m2 = m1.transpose()

.tranpose()=

Single-threaded:

=

Multi-threaded (4 threads):

.tranpose()



Programming Project
• Parallelize other Matrix operations
–Multiplication
– Assignment
– Constructors
– Equality

• Some operations (file I/O) are inherently 
sequential, providing a useful lesson…



Assessment
All students complete end-of-course 
evaluations with open-ended feedback:

• They really like the week on parallelism
– Covering material that is not in the textbook 

makes CS2 seem fresh and cutting edge
– Students really like learning how they can use 

all their cores instead of just one
– Having students experience speedup is key    

(and even better if they can see it)



PDC in CS3 (Algorithms)
Parallel Algorithms:
– Parallel Searching 
– Parallel Sorting
– Distributed Graph Algorithms
– Parallel features in C# (.NET) 
–…



PDC in Programming Languages
• Shared Memory Communication
– Race conditions
– Synchronization mechanisms: Using…
oSemaphores, Locks, Condition Variables, Monitors,

• Distributed Memory Communication
– Send-Receive in different languages
– Blocking vs non-blocking behavior

• Lab exercise: Compare multithreading  
performance in Ada, Clojure, Java, Ruby



PDC in Software Engineering
Distributed computing via the cloud…
• Accessing cloud services via APIs
• Group Project: Client-server system
– Front-side mobile app
– Server-side in the cloud



PDC in OS & Networking
• Shared Memory Communication
– Race conditions
– Synchronization mechanisms: Building…
oSemaphores, Locks, Condition Variables, Monitors,

• Distributed Memory Communication
– Sockets, RPC, Send-Receive behavior, …

• Final Project: Multithreaded Client-Server



Digging Deeper
• Covering PDC in core courses ensures

that every major receives basic exposure
• For students who want more, we have    

CS 374: High Performance Computing
– 5 weeks of MPI
– 1 week of Pthreads
– 2 weeks of OpenMP
– 1 week of MPI+OpenMP
– 2 weeks of CUDA
– 1 week of Hadoop (needs to morph to Spark)



Summary
• Every CS major needs “exposure” to PDC
– One course model
–Multiple course model
oCS2 is a possible place to introduce parallelism
oGradual progression:

a. ‘Embarrassingly parallel’ problems to avoid race conditions
b. Using synchronization mechanisms
c. Implementing synchronization mechanisms
d. Leave deeper study as an advanced elective

• What will work at your institution?


