
A Theory of Parallel Computation
The π-calculus

Background
● DFAs, NFAs, pushdown automata, Turing machines... All are mathematical entities that

model computation. These abstract systems have concrete, practical applications in
computer science (CS).

For example, deterministic finite automata (DFAs) are associated with regular
expressions, which computer programs that involve pattern matching frequently rely on.
Also, knowing theoretical results such as the inability of any computation to determine
whether or not another computation will stop (Halting Problem) can keeps programmers
from attempting to write impossible computer programs.

● Automata represent one approach to mathematically modeling computation. There are
others.

For example, the mathematical logician Alonzo Church created a formalism of
computation based on functions in the 1930s, called the λ-calculus. The key notion in
this approach is an operator (i.e., function) called λ that is capable of generating other
functions.

One of the earliest high-level programming languages, LISP (for LISt Processing
language, 1959), is a practical computer implementation of the λ-calculus. LISP was
designed originally for research in artificial intelligence (AI), a field in CS that perpetually
seeks to extend the capabilities of computers to carry out tasks that humans can do.
Scheme and Clojure are some contemporary programming languages descended from
the original LISP, and and other widely used "functional" programming languages such
as ML and Haskell are based on the λ-calculus. Programmers use these languages
to develop useful applications, and researchers use them to explore new frontiers in
computing.

● From a theoretical viewpoint, the λ-calculus embodies all essential features of functional
computation. This holds because the relationship between "inputs" (domain values
in Mathematics, arguments/parameters in programming) and "outputs" (range values
in Math, return values in programming) from functions expresses everything in a
purely functional system of computations (no "state changes"), and λ-calculus is
the mathematical theory of functions considered entirely according to their "inputs"
and "outputs."

In fact, it can be proven that any other foundation for functional computation, such as
Turing machines (which can express any type of computation), will have exactly the
same expressive power for functional computation as the λ-calculus [Pierce 95].

● However, all of the computational models we've mentioned so far (Turing machines, λ-
calculus, etc.) are for sequential computations only. This means that we assume only a

single computational entity. Until a few years ago, it was reasonable to assume that only
one computational processor would be available for most computations, because most
computers had only one computational circuit for carrying out instructions.

● Nowadays, retailers sell only multi-core computers (i.e., computers having multiple
circuits for carrying out instructions) on the commodity market, and hardware
manufacturers such as Intel and AMD no longer produce chips with only one
computational processor. This results from computer engineering having reached
certain limitations on performance for individual processors (related to electrical power
consumption, access to computer memory, and parallel speedup capabilities with a
single processor).

● Consequently, the only way to continue improving the performance of computers going
forward is to use parallel computing, in which multiple computer actions are carried out
physically at the same time. Parallel computing (or parallelism) can be accomplished
by writing programs that use multiple computational cores at the same time, and/or by
running multiple cooperating programs on multiple computers.

● Some computations are easy to parallelize. For example, a computation may involve
applying exactly the same program steps to multiple independent input data sets, in
which case we can perform parallel processing by executing that series of program
steps on multiple processors (i.e., multiple cores and/or computers), and submitting
different data sets to different processors. We call this strategy data parallelism. Some
authors refer to such computations as being embarassingly parallel.

● Other types of computations may be parallelizable without being data parallelizable. For
example, matrix multiplication requires combining the rows and columns of rectangular
arrays of numbers in ways that require accessing each number multiple times, in
different groupings. Parallelization strategies for matrix multiplication exist, such as
multiplying submatrices formed by subdividing the original matrices, then combining
those results appropriately. However, those strategies are more complex than simple
data parallelism.

● Many computations require parallelizing according to the computational steps instead
of (or in addition to) parallelizing according to the data. When a computation has
multiple processors carrying out different sequences of computational steps in order to
accomplish its work, we say that computation has task parallelism.

For example, imagine a computation that extracts certain elements from a body of text
(e.g., proper names), then sorts those elements, and finally removing duplications.
With multiple processors, one might program one processor to extract those elements,
another to perform the sorting operation, and a third to remove the duplications. In effect,
we have an assembly line of processes, also called a pipeline by computer scientists.

● Computer scientists have found other computations exceedingly difficult to parallelize
effectively. Notably, nobody knows how to parallelize finite state machines (FSMs) well,
as a general class of computations. [View from Berkeley 06, p.16]

● We can easily imagine how to construct a mathematical model of computation for simple
data parallelism from a model of computation for the sequential case of that same
computation, by replicating the sequential model. This approach seems promising as
long as we can assume that those multiple parallel computations do not need to interact
with each other in any way.

● However, more complicated forms of parallelism that involve multiple processes
interacting in various ways, such as the task parallelism example of pipelining, requires
a mathematical model of parallel computation capable of expressing those interactions
between processes.

The π-calculus, introduced in the next section, is an example of such a model of parallel
computation.

The π-calculus, informally
● A calculus is a method or computation based on symbolic manipulation.

○
In differential calculus, symbolic manipulations involve an operator that
satisfies rules such as the following:

■

■

○ In integral calculus, symbolic manipulations involve an operator
that satisfies rules such as the following:

■

■

○ In the λ-calculus, symbolic manipulations involve an operator λ that has its
manipulation rules, involving operations such as substitution of variables and
applying functions to particular "input" values (function calls).

● The operators and manipulation rules for a calculus may have useful concrete
applications. For example, the differential calculus rules are satisfied by certain

continuous mathematical functions, where the operator represents the rate of
change of those functions.

We typically think of as operating on those functions, although the differential calculus
rules are actually abstract and might be applied to other entities than functions.

● The π-calculus has six operators. We think of them as operating on sequential
processes, i.e., running computer programs, although they are abstract and can be used
without any particular concrete application.

○ The concurrency operator (pronounced "P par Q") may be thought of as
two processes P and Q executing in parallel (e.g., simultaneously on separate
cores or on different computers).

○ The communication operators may be thought of as sending and receiving
messages from one process to another, across a communication channel that is
used only by those two processes (i.e., a dedicated communication channel in
the language of CS).

■ The output prefixing operator (pronounced "output x along c
(then proceed with P)") may be thought of as send a message x across
a channel c, then proceeding to carry out process P. Here, the channel c
may be thought of as starting from this process to another.

Channels such as c may be set up between any two processes, but
those two processes are then uniquely determined for c, and may not

be changed later. Channels provide for a single communication in one
direction only, specified when the channel is created.

The "dot" that appears in this notation indicates the boundary between
one step and a next step in a process.

■ The input prefixing operator (pronounced "Input y along c") may
be thought of as waiting to receive a value from the channel c, and once
a value is received, storing that value in y and proceeding to carry out
process P.

○ The replication operator ("bang P") may be thought of as creating a new
process that is a duplicate of P.

This sort of an operation is quite realistic in parallel computing. For example,
a web server is a program that receives requests for particular web pages
and responds by sending those web pages. Web servers must be capable
of handling multiple responses at the same time, because some web pages
may take a significant amount of time to prepare and deliver, and it would be
undesirable for one user to be delayed by another user's request. Therefore,
a web server system may start up a new duplicate process for handling each
request it receives. (Students who have studied operating systems will also see
an analogy between the system call fork() and this replication operator.)

In the π-calculus, arbitrarily many duplicate processes are created by a single
application of the replication operator.

○ The name allocation operator ("new c in P") may be thought of as
allocating a new constant communication channel c within the process P. The
symbol ν is the Greek letter nu, pronounced like "new".

○ The alternative operator ("P plus Q") represents a process capable
of taking part in exactly one alternative for communication. That process cannot
make the choice among its alternatives; that selection among alternatives cannot
be determined until it occurs, and once determined, any remaining alternatives
have lost their chance and will never occur. (These restrictions on the alternative
operator are not strictly necessary for π-calculus to work, but they simplify the
theory.)

● Besides these operations, there is one constant process 0 that does nothing. For
example, we might write for a process that sends one message across a
channel c, then does nothing more.

● Observe that all of the operations have to do with entire processes or with
communication among processes. For example, there are no arithmetic operations such
as multiplication, nor any operations related to applying (i.e., calling) functions, nor a
way to store values in memory (assignment). The π-calculus is entirely concerned with
communication among processes that are executing in parallel.

However, a theory of sequential processes, such as automata or the λ-calculus,
can be used in conjunction with π-calculus in order to model both the parallelism of
communication and sequential algorithms that take place between communication
events.

In our examples, we will use an informal notation for the sequential aspects of a process
for readability and convenience, but we will use the π-calculus formalism carefully in
matters of parallelism and communication between processes.

Here is an example that models parallel computation using the π-calculus operators.

A client-server application is a parallel system in which a program running on one
computer, called the server program, responds to requests that may be sent by
programs that may be running on other computers, called client programs. One example
of a client-server application consists of web browsers (as clients) communicating with a
web server (as server). However, there are other possibilities.
Consider a client-server application in which clients send requests to a server to apply
a particular function to arguments that a client provides. In CS, this type of service is
calledremote procedure call (RPC) (where "procedure" is another term for "function").
RPC can enable clients to obtain the results of computations that those clients may be
unable to compute on their own "local" hardware.

We will model RPC using a simple incrementing function.

○ Here is C++ language code for the desired function.
 int incr(int x) {
 return x+1;
 }

In case you are not a programmer: The first line indicates that the name of this
function is incr, and that incr accepts one integer input (argument) named x and
returns an integer value (as indicated by the int at the beginning of the line). The
second line is a return statement, which specifies the output ("return value") in
terms of the inputx. This incrementing function returns the value x+1.

○ Here is a model for the server process:

Here, the expression x+1 indicates sequential code, but the remainder of
the expression uses π-calculus formalism. Observe that incr is a channel for
communicating to the server.
The use of the replication operator ! means that the entire remainder of the
expression will be duplicated as many times as needed (in order to serve as
many RPC requests as may arrive over time). We will consider the operator !
to have higher precedence that | and + but lower precedence than the other π-
calculus operators; this means that the expression above is equivalent to

○ Here is C++ code for part of a client process:
 y = incr(17);
 ...

The dots represent steps to be taken after accomplishing a remote procedure call
of incr.

Note for non-programmers: in this C++ context, the symbol = is an assignment
operator, not an equality relation. The effect is to compute the result of applying
the function incr with input value 17, and to store the output (return value) into

computer memory under the name y.

Note for everyone: The mathematical effect of making an assignment is
substitution. In other words, the assignment of 18 to y means that every
occurence of y should be replaced by 18 throughout the program steps indicated
by dots above.

○ Here is a model for that client process, starting from the assignment above:

Here, we create a new channel a and send that channel, together with the value
17 that we want to increment, to the server, using the incr channel from client
to server. The channel a is for communicating from the server back to the same
client. Observe that the output along incr requesting the service takes place in
parallel with the input alonga for delivering the result. (Of course, the first of these
will necessarily occur before the second in this particular situation.) The entire
client model consists of π-calculus expressions, except for the integer 17.

In this expression, the process P represents steps the client will take after the
remote procedure call of incr. In other words, P represents the dots in the client
code above. We want RPC to cause y to be replaced by 18 throughout P.

○ We can now express a model for the entire client-server application.

● Structural congruence, an equivalence relation on π-calculus expressions.
● Reduction, the "calculus rules" for π-calculus.
● We can now use the definition of structural congruence and the reduction rules to give a

formal proof that our π-calculus model of an incr remote procedure call service produces
the results we desired for it.

http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Reduction_semantics

In this proof, we started with the π-calculus expression for the server and the π-calculus
expression for the client before RPC, running in parallel. We ended with that same server we
began with, and with a client process P after RPC that has every occurrence of y replaced by 18
-- as desired.

Exercises
1. If a does not appear in P, show that the last line above is structurally congruent to !

incr(c,x).c x+1 .0 | P[y/18]. Give a formal proof segment using the axioms and
reduction rules. (NOTE TO WORKSHOP PARTICIPANTS: the red c should have a bar
over it.)

2. Prove the following facts, using formal proofs from axiom and reduction rules, as in the
verification of the RPC server above.

a.
b.

3. Write a π-calculus expression that models an RPC system for an echo function, whose
return value (output) is the same as its argument (input).

Hints: Modify the RPC example for incr to serve echo instead. You can use the same
client expression as before, but you will need to alter the server expression. Since the
problem asks for a system instead of only a server, your final answer should be a π-
calculus expression for both the client and the server.

Here's a C++ programming language definition of echo, in case it's helpful.
 int echo(int x) {
 return x;
 }

4. Examine the formal proof of the π-calculus model of an incr RPC service above, and
indicate how to transform it to a proof of your π-calculus model of an echo RPC service
in the previous problem.
Suggestion: It might be convenient to print the page(s) of this web document that contain
the proof, and make changes by hand on that printout.

5. Consider the following π-calculus model.

Here, the notations p() and q(x) represent sequential computer functions, and are not
part of the π-calculus notation.

The function p() requires no arguments and sequentially produces a return value
(output) when called (applied).
The function q(x) requires one argument (input) x and performs some sequential
operation with that argument when called.

Answer the following questions:
a. This model formally describes an interaction between two programs running in

parallel. Give an informal verbal description of what those two programs do and
how they interact, according to the π-calculus expression above.

b. Perform π-calculus reduction and structural congruence to work through one
interaction between these two programs.

c. You may give a thorough formal computation as in the proof of the incr RPC
system, or you may skip or combine steps you feel comfortable with, as long as
your work is accurate and expresses the calculation clearly.

6. Write your own π-calculus expressions for modeling each of the following parallel
computations. (Each itemized sentence describes a separate problem to solve.) Note:
No π-calculus replication operations are necessary for these problems, although you
may optionally include it.

a. One program uses channel a to send an integer value 5 and a new channel to
another program, and that latter program sends twice that integer value back to
the first program along that new channel.

b. One program uses channel b to send an integer value 10 and a new channel to
another program; that second program uses channel c to send twice that integer
value and that same new channel to a third program; and that third program
outputs three times the integer it receives along the channel it receives to the first
program.

Examples and applications
● An exercise: Reduce the following π-calculus expression:

● Mobile communications [Milner 91]

History; other formalisms

[Wing 02]
● The π-calculus is an example of a process calculus, i.e., a mathematical structure

with a set of values and operations on those values in which processes are among the
values and parallel composition ("running processes in parallel") is a commutative and
associative operation on processes.

● The π-calculus was created in 1992 by Robin Milner, Joachim Parrow, and David
Walker. Milner (1934-2010) was a famous British computer scientist known for inventing
one of the early systems for automatic theorem proving (LCF) and for creating the
functional programming language ML, in addition to the π-calculus.

● The π-calculus extends Milner's earlier process calculus system called CCS (Calculus of
Concurrent Systems) [Milner 80].

● Another famous British computer scientist, Tony Hoare, created a simlar system called
CSP (Communicating Sequential Processes) [Hoare 85], starting about 1978. CSP is the
theoretical basis for the Occam language for parallel programming.

● A major distinction between the π-calculus and predecessor systems is the π-calculus's
ability to pass a channels from one process to another, along some other communication
channel. This feature enables the system to model mobility, (e.g., cell phones) and
changes in process structure.

