
A Theory of Parallel Computation
The π-calculus

Background
● DFAs, NFAs, pushdown automata, Turing machines... All are mathematical entities that 

model computation. These abstract systems have concrete, practical applications in 
computer science (CS).
 
For example, deterministic finite automata (DFAs) are associated with regular 
expressions, which computer programs that involve pattern matching frequently rely on. 
Also, knowing theoretical results such as the inability of any computation to determine 
whether or not another computation will stop (Halting Problem) can keeps programmers 
from attempting to write impossible computer programs.
 

● Automata represent one approach to mathematically modeling computation. There are 
others.
 
For example, the mathematical logician Alonzo Church created a formalism of 
computation based on functions in the 1930s, called the λ-calculus. The key notion in 
this approach is an operator (i.e., function) called λ that is capable of generating other 
functions.
 
One of the earliest high-level programming languages, LISP (for LISt Processing 
language, 1959), is a practical computer implementation of the λ-calculus. LISP was 
designed originally for research in artificial intelligence (AI), a field in CS that perpetually 
seeks to extend the capabilities of computers to carry out tasks that humans can do. 
Scheme and Clojure are some contemporary programming languages descended from 
the original LISP, and and other widely used "functional" programming languages such 
as ML and Haskell are based on the λ-calculus. Programmers use these languages 
to develop useful applications, and researchers use them to explore new frontiers in 
computing.
 

● From a theoretical viewpoint, the λ-calculus embodies all essential features of functional 
computation. This holds because the relationship between "inputs" (domain values 
in Mathematics, arguments/parameters in programming) and "outputs" (range values 
in Math, return values in programming) from functions expresses everything in a 
purely functional system of computations (no "state changes"), and λ-calculus is 
the mathematical theory of functions considered entirely according to their "inputs" 
and "outputs."
 
In fact, it can be proven that any other foundation for functional computation, such as 
Turing machines (which can express any type of computation), will have exactly the 
same expressive power for functional computation as the λ-calculus [Pierce 95].
 

● However, all of the computational models we've mentioned so far (Turing machines, λ-
calculus, etc.) are for sequential computations only. This means that we assume only a 



single computational entity. Until a few years ago, it was reasonable to assume that only 
one computational processor would be available for most computations, because most 
computers had only one computational circuit for carrying out instructions.



● Nowadays, retailers sell only multi-core computers (i.e., computers having multiple 
circuits for carrying out instructions) on the commodity market, and hardware 
manufacturers such as Intel and AMD no longer produce chips with only one 
computational processor. This results from computer engineering having reached 
certain limitations on performance for individual processors (related to electrical power 
consumption, access to computer memory, and parallel speedup capabilities with a 
single processor).

● Consequently, the only way to continue improving the performance of computers going 
forward is to use parallel computing, in which multiple computer actions are carried out 
physically at the same time. Parallel computing (or parallelism) can be accomplished 
by writing programs that use multiple computational cores at the same time, and/or by 
running multiple cooperating programs on multiple computers.

● Some computations are easy to parallelize. For example, a computation may involve 
applying exactly the same program steps to multiple independent input data sets, in 
which case we can perform parallel processing by executing that series of program 
steps on multiple processors (i.e., multiple cores and/or computers), and submitting 
different data sets to different processors. We call this strategy data parallelism. Some 
authors refer to such computations as being embarassingly parallel.

● Other types of computations may be parallelizable without being data parallelizable. For 
example, matrix multiplication requires combining the rows and columns of rectangular 
arrays of numbers in ways that require accessing each number multiple times, in 
different groupings. Parallelization strategies for matrix multiplication exist, such as 
multiplying submatrices formed by subdividing the original matrices, then combining 
those results appropriately. However, those strategies are more complex than simple 
data parallelism.

● Many computations require parallelizing according to the computational steps instead 
of (or in addition to) parallelizing according to the data. When a computation has 
multiple processors carrying out different sequences of computational steps in order to 
accomplish its work, we say that computation has task parallelism.
 
For example, imagine a computation that extracts certain elements from a body of text 
(e.g., proper names), then sorts those elements, and finally removing duplications. 
With multiple processors, one might program one processor to extract those elements, 
another to perform the sorting operation, and a third to remove the duplications. In effect, 
we have an assembly line of processes, also called a pipeline by computer scientists.
 

● Computer scientists have found other computations exceedingly difficult to parallelize 
effectively. Notably, nobody knows how to parallelize finite state machines (FSMs) well, 
as a general class of computations. [View from Berkeley 06, p.16]

● We can easily imagine how to construct a mathematical model of computation for simple 
data parallelism from a model of computation for the sequential case of that same 
computation, by replicating the sequential model. This approach seems promising as 
long as we can assume that those multiple parallel computations do not need to interact 
with each other in any way.

● However, more complicated forms of parallelism that involve multiple processes 
interacting in various ways, such as the task parallelism example of pipelining, requires 
a mathematical model of parallel computation capable of expressing those interactions 
between processes.

 
The π-calculus, introduced in the next section, is an example of such a model of parallel 
computation.



The π-calculus, informally
● A calculus is a method or computation based on symbolic manipulation.

○
In differential calculus, symbolic manipulations involve an operator   that 
satisfies rules such as the following:

■

■

○ In integral calculus, symbolic manipulations involve an operator   
that satisfies rules such as the following:

■

■

○ In the λ-calculus, symbolic manipulations involve an operator λ that has its 
manipulation rules, involving operations such as substitution of variables and 
applying functions to particular "input" values (function calls).

● The operators and manipulation rules for a calculus may have useful concrete 
applications. For example, the differential calculus rules are satisfied by certain 

continuous mathematical functions, where the operator   represents the rate of 
change of those functions.
 

We typically think of as operating on those functions, although the differential calculus 
rules are actually abstract and might be applied to other entities than functions.
 

● The π-calculus has six operators. We think of them as operating on sequential 
processes, i.e., running computer programs, although they are abstract and can be used 
without any particular concrete application.

○ The concurrency operator  (pronounced "P par Q") may be thought of as 
two processes P and Q executing in parallel (e.g., simultaneously on separate 
cores or on different computers).

○ The communication operators may be thought of as sending and receiving 
messages from one process to another, across a communication channel that is 
used only by those two processes (i.e., a dedicated communication channel in 
the language of CS).

■ The output prefixing operator  (pronounced "output x along c 
(then proceed with P)") may be thought of as send a message x across 
a channel c, then proceeding to carry out process P. Here, the channel c 
may be thought of as starting from this process to another.
 
Channels such as c may be set up between any two processes, but 
those two processes are then uniquely determined for c, and may not 



be changed later. Channels provide for a single communication in one 
direction only, specified when the channel is created.
 
The "dot" that appears in this notation indicates the boundary between 
one step and a next step in a process.

■ The input prefixing operator    (pronounced "Input y along c") may 
be thought of as waiting to receive a value from the channel c, and once 
a value is received, storing that value in y and proceeding to carry out 
process P.

○ The replication operator     ("bang P") may be thought of as creating a new 
process that is a duplicate of P.
 
This sort of an operation is quite realistic in parallel computing. For example, 
a web server is a program that receives requests for particular web pages 
and responds by sending those web pages. Web servers must be capable 
of handling multiple responses at the same time, because some web pages 
may take a significant amount of time to prepare and deliver, and it would be 
undesirable for one user to be delayed by another user's request. Therefore, 
a web server system may start up a new duplicate process for handling each 
request it receives. (Students who have studied operating systems will also see 
an analogy between the system call fork() and this replication operator.)
 
In the π-calculus, arbitrarily many duplicate processes are created by a single 
application of the replication operator.
 

○ The name allocation operator    ("new c in P") may be thought of as 
allocating a new constant communication channel c within the process P. The 
symbol ν is the Greek letter nu, pronounced like "new".

○ The alternative operator      ("P plus Q") represents a process capable 
of taking part in exactly one alternative for communication. That process cannot 
make the choice among its alternatives; that selection among alternatives cannot 
be determined until it occurs, and once determined, any remaining alternatives 
have lost their chance and will never occur. (These restrictions on the alternative 
operator are not strictly necessary for π-calculus to work, but they simplify the 
theory.)

● Besides these operations, there is one constant process 0 that does nothing. For 
example, we might write    for a process that sends one message across a 
channel c, then does nothing more.

● Observe that all of the operations have to do with entire processes or with 
communication among processes. For example, there are no arithmetic operations such 
as multiplication, nor any operations related to applying (i.e., calling) functions, nor a 
way to store values in memory (assignment). The π-calculus is entirely concerned with 
communication among processes that are executing in parallel.
 
However, a theory of sequential processes, such as automata or the λ-calculus, 
can be used in conjunction with π-calculus in order to model both the parallelism of 
communication and sequential algorithms that take place between communication 
events.
 



In our examples, we will use an informal notation for the sequential aspects of a process 
for readability and convenience, but we will use the π-calculus formalism carefully in 
matters of parallelism and communication between processes.
 
Here is an example that models parallel computation using the π-calculus operators.
 
A client-server application is a parallel system in which a program running on one 
computer, called the server program, responds to requests that may be sent by 
programs that may be running on other computers, called client programs. One example 
of a client-server application consists of web browsers (as clients) communicating with a 
web server (as server). However, there are other possibilities.
Consider a client-server application in which clients send requests to a server to apply 
a particular function to arguments that a client provides. In CS, this type of service is 
calledremote procedure call (RPC) (where "procedure" is another term for "function"). 
RPC can enable clients to obtain the results of computations that those clients may be 
unable to compute on their own "local" hardware.
 
We will model RPC using a simple incrementing function.

○ Here is C++ language code for the desired function.
   int incr(int x) { 
      return x+1; 
    } 
 
In case you are not a programmer: The first line indicates that the name of this 
function is incr, and that incr accepts one integer input (argument) named x and 
returns an integer value (as indicated by the int at the beginning of the line). The 
second line is a return statement, which specifies the output ("return value") in 
terms of the inputx. This incrementing function returns the value x+1.

○ Here is a model for the server process:

Here, the expression x+1 indicates sequential code, but the remainder of 
the expression uses π-calculus formalism. Observe that incr is a channel for 
communicating to the server.
The use of the replication operator ! means that the entire remainder of the 
expression will be duplicated as many times as needed (in order to serve as 
many RPC requests as may arrive over time). We will consider the operator ! 
to have higher precedence that | and + but lower precedence than the other π-
calculus operators; this means that the expression above is equivalent to

○ Here is C++ code for part of a client process:
   y = incr(17); 
    ... 
 

The dots represent steps to be taken after accomplishing a remote procedure call 
of incr.
 
Note for non-programmers: in this C++ context, the symbol = is an assignment 
operator, not an equality relation. The effect is to compute the result of applying 
the function incr with input value 17, and to store the output (return value) into 



computer memory under the name y.
 
Note for everyone: The mathematical effect of making an assignment is 
substitution. In other words, the assignment of 18 to y means that every 
occurence of y should be replaced by 18 throughout the program steps indicated 
by dots above.
 

○ Here is a model for that client process, starting from the assignment above:

Here, we create a new channel a and send that channel, together with the value 
17 that we want to increment, to the server, using the incr channel from client 
to server. The channel a is for communicating from the server back to the same 
client. Observe that the output along incr requesting the service takes place in 
parallel with the input alonga for delivering the result. (Of course, the first of these 
will necessarily occur before the second in this particular situation.) The entire 
client model consists of π-calculus expressions, except for the integer 17.
 
In this expression, the process P represents steps the client will take after the 
remote procedure call of incr. In other words, P represents the dots in the client 
code above. We want RPC to cause y to be replaced by 18 throughout P.
 

○ We can now express a model for the entire client-server application.

● Structural congruence, an equivalence relation on π-calculus expressions.
● Reduction, the "calculus rules" for π-calculus.
● We can now use the definition of structural congruence and the reduction rules to give a 

formal proof that our π-calculus model of an incr remote procedure call service produces 
the results we desired for it.

http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Structural_congruence
http://en.wikipedia.org/wiki/pi-calculus#Reduction_semantics


 
In this proof, we started with the π-calculus expression for the server and the π-calculus 
expression for the client before RPC, running in parallel. We ended with that same server we 
began with, and with a client process P after RPC that has every occurrence of y replaced by 18 
-- as desired.

Exercises
1. If a does not appear in P, show that the last line above is structurally congruent to !

incr(c,x).c x+1 .0  |  P[y/18]. Give a formal proof segment using the axioms and 
reduction rules. (NOTE TO WORKSHOP PARTICIPANTS:  the red c should have a bar 
over it.)

2. Prove the following facts, using formal proofs from axiom and reduction rules, as in the 
verification of the RPC server above.

a.  
b.  

3. Write a π-calculus expression that models an RPC system for an echo function, whose 
return value (output) is the same as its argument (input).
 
Hints: Modify the RPC example for incr to serve echo instead. You can use the same 
client expression as before, but you will need to alter the server expression. Since the 
problem asks for a system instead of only a server, your final answer should be a π-
calculus expression for both the client and the server.



 
Here's a C++ programming language definition of echo, in case it's helpful.
   int echo(int x) { 
      return x; 
    } 
 

4. Examine the formal proof of the π-calculus model of an incr RPC service above, and 
indicate how to transform it to a proof of your π-calculus model of an echo RPC service 
in the previous problem.
Suggestion: It might be convenient to print the page(s) of this web document that contain 
the proof, and make changes by hand on that printout.

5. Consider the following π-calculus model.

Here, the notations p() and q(x) represent sequential computer functions, and are not 
part of the π-calculus notation.

The function p() requires no arguments and sequentially produces a return value 
(output) when called (applied).
The function q(x) requires one argument (input) x and performs some sequential 
operation with that argument when called.

Answer the following questions:
a. This model formally describes an interaction between two programs running in 

parallel. Give an informal verbal description of what those two programs do and 
how they interact, according to the π-calculus expression above.

b. Perform π-calculus reduction and structural congruence to work through one 
interaction between these two programs.

c. You may give a thorough formal computation as in the proof of the incr RPC 
system, or you may skip or combine steps you feel comfortable with, as long as 
your work is accurate and expresses the calculation clearly.

6. Write your own π-calculus expressions for modeling each of the following parallel 
computations. (Each itemized sentence describes a separate problem to solve.) Note: 
No π-calculus replication operations are necessary for these problems, although you 
may optionally include it.

a. One program uses channel a to send an integer value 5 and a new channel to 
another program, and that latter program sends twice that integer value back to 
the first program along that new channel.

b. One program uses channel b to send an integer value 10 and a new channel to 
another program; that second program uses channel c to send twice that integer 
value and that same new channel to a third program; and that third program 
outputs three times the integer it receives along the channel it receives to the first 
program.

Examples and applications
● An exercise: Reduce the following π-calculus expression:

● Mobile communications [Milner 91]

History; other formalisms



[Wing 02]
● The π-calculus is an example of a process calculus, i.e., a mathematical structure 

with a set of values and operations on those values in which processes are among the 
values and parallel composition ("running processes in parallel") is a commutative and 
associative operation on processes.

● The π-calculus was created in 1992 by Robin Milner, Joachim Parrow, and David 
Walker. Milner (1934-2010) was a famous British computer scientist known for inventing 
one of the early systems for automatic theorem proving (LCF) and for creating the 
functional programming language ML, in addition to the π-calculus.

● The π-calculus extends Milner's earlier process calculus system called CCS (Calculus of 
Concurrent Systems) [Milner 80].

● Another famous British computer scientist, Tony Hoare, created a simlar system called 
CSP (Communicating Sequential Processes) [Hoare 85], starting about 1978. CSP is the 
theoretical basis for the Occam language for parallel programming.

● A major distinction between the π-calculus and predecessor systems is the π-calculus's 
ability to pass a channels from one process to another, along some other communication 
channel. This feature enables the system to model mobility, (e.g., cell phones) and 
changes in process structure.

 
 
 
 


