
MPI 01: An Introduction to MPI with Open MPI
Draft 1 -- Patrick Garrity -- St. Olaf College

Until recently, parallelism in software could not be achieved on most single machines. Before
multi-core existed, much of high performance computing (HPC) relied on message passing,
which allows multiple computers to collaborate on a single problem. Even now message
passing is a large part of HPC, and has been given even more power by the presence of
multiple cores.

1. Message Passing

One programming technique to achieve parallelism is called message passing. In message
passing, different processes communicate with one another through messages. These
messages are tagged pieces of data sent across a network. Since this technology is network-
based, it allows processes on many different machines to communicate with one-another, and
in turn for multiple computers to run a coordinated effort to execute a program. In addition,
on a multi-core machine a message passing program can send messages between multiple
processes running on a single machine.

There are a large number of libraries for message passing, and different institutions may be
using upwards of ten of these at a time. This code is called the message passing interface,
or MPI. There are a number of proprietary implementations, but there are also open source
implementations that are community-maintained. One of these, Open MPI, is the result
of the convergence of multiple MPI projects. Open MPI implements the MPI-2.1 (current)
standard and is actively maintained, making it an attractive option for doing message passing.
Fortunately, different implementations of MPI are code-compatible if they follow the standard, so
any MPI-2.1 implementation should work for this lesson.

2. Example

This lesson will explain how to use MPI through two examples that demonstrate the basic
concepts of both the library and the message passing. The first example shows how to initialize
and finalize MPI, while getting some information about the environment.

// File: mpi01.cpp

#include <iostream>

#include <mpi.h>

using std::cout;

using std::endl;

int main(int argc, char ** argv)

{

 int rank = 0;

 int size = 0;

 int length = 0;

 char name[MPI_MAX_PROCESSOR_NAME];

 MPI::Init(argc, argv);

 rank = MPI::COMM_WORLD.Get_rank();

 size = MPI::COMM_WORLD.Get_size();

 MPI::Get_processor_name(name, length);

 cout << "Process " << rank << " of " << size <<

 " on processor: " << name << endl;

 MPI::Finalize();

 return 0;

}

Code Breakdown
This example demonstrates how to initialize MPI, and get some basic information about its
environment. All MPI applications require initialization and finalization, and termination of a
process without finalizing it will cause an error. This program gets the number of processes
created, and reports from each process its number and name of its overarching processor. This
behavior will become more clear with a set of sample output. Important lines of code have been
highlighted.

MPI::Init(argc, argv);

This line initializes MPI, and acts as an entry point to MPI code. This function supports
command-line arguments as well. After a call to MPI::Init() has been made, the program is
running identical code on multiple processes until MPI::Finalize() is called.

MPI::Finalize();

This is a required call after MPI::Init() has been called. The MPI::Finalize() function
ends MPI execution and performs internal cleanup. Every process in an MPI application must
finalize in order to successfully terminate.

rank = MPI::COMM_WORLD.Get_rank();

The Get_rank() function returns the rank, or process number, of the current process within the
COMM_WORLD. This is a communicator (group) containing all processes available to the program.

size = MPI::COMM_WORLD.Get_size();

The Get_size() function returns the size of the COMM_WORLD, or the total number of processes
available to the program.

char name[MPI_MAX_PROCESSOR_NAME];

MPI::Get_processor_name(name, length);

The Get_processor_name() function returns the name of the processor that is executing the
current process. The name refers to the name of the machine running the process, and not that
of the CPU. The MPI_MAX_PROCESSOR_NAME constant defines the maximum length of such a

name.

How to Compile and Link the Example
$ mpiCC -c mpi01.cpp -o mpi01.o
$ mpiCC -o mpi01 mpi01.o

Example Output
$ mpirun -np 4 ./mpi01

Process 1 of 4 on processor: pulse

Process 2 of 4 on processor: pulse

Process 3 of 4 on processor: pulse

Process 0 of 4 on processor: pulse

This example was run on a single dual-core machine with a hostname of pulse. Using the
mpirun command, it was specified that 4 processes were to be used by this program. Since the
host machine only had 2 cores, only up to two of the processes were able to run concurrently.

3. Open MPI Command Line: mpiCC

Using Open MPI requires knowledge of some command line programs provided with Open MPI.
The first of these is mpiCC, which invokes the C++ compiler along with the correct arguments
required to compile an MPI program. This is the recommended way to compile and link Open
MPI source code, because it ensures that the correct dependencies will be accounted for.
Since the mpiCC program simply calls the underlying compiler, additional arguments can be
added. Note that mpiCC is synonymous with the command mpicxx.

4. Open MPI Command Line: mpirun

The other key command line program provided by Open MPI is mpirun. This program allows
developers to specify the number of processes, which computers to run on, and even which
cores to run on, to an MPI application. At least a basic knowledge of this program is required
for any developer using Open MPI. In addition to this lesson, the man page for mpirun is an
excellent resource on its usage.

mpirun Basic Syntax
$ mpirun [options] <program> [<args>]

Specifying the Number of Processes
$ mpirun -np N <program> [<args>]

The above command runs program with N processes.

Specifying Which Machines to Use
$ mpirun -H host01,host02,... <program> [<args>]

$ mpirun --hostfile HOSTFILE <program> [<args>]

Hosts can be provided through either a list, or a file with one host entry per line. For more
information on hostfiles, please see the mpirun man page. The first command runs program on

machines host01, host02, and so on. The second command runs program on the machines
specified in the local file HOSTFILE.

Again, reading the manpage for mpirun will provide extensive information on more advanced
usage, including specifying a number of processes per machine, binding to specific cores, and
associating specific ranks with specific machines. This type of control can be extremely useful
for controlling and debugging Open MPI applications.

5. Another Example

The following example demonstrates how to use MPI to allow processes to communicate with
one another. The initial example did not explicitly use this communication, but this program will
send data from one process to another based on rank.

// File: mpi02.cpp

#include <iostream>

#include <mpi.h>

using std::cout;

using std::endl;

int main(int argc, char ** argv)

{

 int rank = 0;

 int size = 0;

 int dest_proc = 0;

 int source_proc = 0;

 int tag = 1;

 MPI::Status status;

 char output_message[6] = { 'H', 'e', 'l', 'l', 'o', ‘\0’ };

 char input_message[6];

 MPI::Init(argc, argv);

 rank = MPI::COMM_WORLD.Get_rank();

 size = MPI::COMM_WORLD.Get_size();

 if (size <= 1)

 {

 MPI::COMM_WORLD.Abort(1);

 }

 if (rank == 0)

 {

 for (int i = 1; i < size; ++i)

 {

 dest_proc = i;

 source_proc = i;

 MPI::COMM_WORLD.Send(output_message, 6, MPI_CHAR, dest_proc,

 tag);

 MPI::COMM_WORLD.Recv(input_message, 6, MPI_CHAR, source_proc,

 tag, status);

 cout << rank << " got " << status.Get_count(MPI_CHAR)

 << " chars from " << status.Get_source() << ": "

 << input_message << endl;

 }

 }

 else

 {

 dest_proc = 0;

 source_proc = 0;

 MPI::COMM_WORLD.Recv(input_message, 6, MPI_CHAR, source_proc,

 tag, status);

 MPI::COMM_WORLD.Send(output_message, 6, MPI_CHAR, dest_proc,

 tag);

 cout << rank << " got " << status.Get_count(MPI_CHAR) << " chars "

 << "from " << status.Get_source() << ": "

 << input_message << endl;

 }

 MPI::Finalize();

 return 0;

}

Code Breakdown
This example essentialy uses the head node (rank 0) to ping the other processes in the world.
The head node sends a message (“Hello”) to each of the other processes. Once they receive
this message, they send back an identical message to the head node. The head node goes
through this process one node at a time - this program could be re-written such that it did not.
Upon receiving a message, each process reports that it received the message by printing to
standard output the number of characters received, and where they came from. Lines of MPI
code new to this example have been highlighted in the source listing.

MPI::Status status;

This creates a default Status object that can be used to obtain information about
communication in MPI. In this case, it is used to collect information in the call to Recv().
Further down the source, where processes are reporting their messages, the Status object
is used to get the number of characters received [status.Get_count(MPI_CHAR)] and the
number of the process which sent those characters [status.Get_source()].

MPI_CHAR

This is a constant of type MPI::Datatype used by MPI to identify data of type char. This is
necessary because MPI does not know what type the data is after sending it to another process.
If the sending process attaches information on what type it is (hence MPI_CHAR), then the
receiving process can cast the received data to the appropriate type. In addition to MPI_CHAR
there are other constant type identifiers, such as MPI_INT.

MPI::COMM_WORLD.Abort(1);

The Abort() function forces MPI to immediately abandon execution on all processes with an
error. The integer (1) is an error status code. The choice of the number 1 in this example was
arbitrary. In this case, Abort() is called when there is only one process. Since the loop that
sends and receives messages would never execute with only one process (since size==1) this
Abort() is not strictly necessary, but it was included for demonstration purposes.

MPI::COMM_WORLD.Send(output_message, 6, MPI_CHAR, dest_proc, tag);

This line sends a message to the specified member of the COMM_WORLD. Its arguments are
interpreted as follows:

● Argument 1 (output_message): This is some block of data that will be send to the
destination process. It is actually send as a void * (void pointer), which means that
it is sent as typeless data. In this example, output_message is an array of characters
containing the data “Hello” (null-terminated).

● Argument 2 (6): This is an integer representing the number of data elements being sent.
Since an array of data is being sent in this example, the size of the array is passed. It
is also possible to send only part of an array: for instance, if this example had used the
number 3 instead of 6, the data “Hel” would have been sent. If an array is not sent, then
the number 1 is given since there is only one data element.

● Argument 3 (MPI_CHAR): This argument is an object of type MPI::Datatype that is used
to identify the type of data being sent. In this example, MPI_CHAR is used (as described
above). This signifies that the data which is sent as an array of type void should be
converted to an array of type char upon retrieval.

● Argument 4 (dest_proc): This argument specifies which process (by rank) the message
should be sent to.

● Argument 5 (tag): The final argument is a tag that is attached to the message. A tag is
an integer that can be used to differentiate between types of messages. For example,
a program may have tags (1, 2, and 3) where 1 represents an error code, 2 represents
a number to add by, and 3 represents a number to multiply by (the data in this case
would be an integer). This program only uses a single tag since it has no need for
differentiation between message types.

MPI::COMM_WORLD.Recv(input_message, 6, MPI_CHAR, source_proc, tag, status);

The Recv() function is used to receive data that has been sent by another process in the
COMM_WORLD (using the Send() function). Its arguments can be interpreted similarly to those of
Send():

● Argument 1 (input_message): A buffer in which to store received data. Data is initially

retrieved as a void pointer, so MPI must be told what type to convert it to.
● Argument 2 (6): The size of the buffer in number of data elements.
● Argument 3 (MPI_CHAR): The type of data in the buffer.
● Argument 4 (source_proc): The process (by rank) from which to receive the message.

In the case of Recv() the constant MPI_ANY_SOURCE may be used to signify that the
function is willing to receive data from any source.

● Argument 5 (tag): The type of tag to receive. In the case of Recv() the constant
MPI_ANY_TAG may be used to signify that the function is willing to receive data of any
tag type.

● Argument 6 (status): A MPI::Status object that is used to store additional information
about the received message.

One final topic to discuss concerning the source code is the concept of blocking vs. non-
blocking. In this example, blocking sends and receives are used. What this means, is that each
call to Send() will not complete until it knows its message has been received. Similarly, each
call to Recv() will not complete until it has received some message. This behavior is called
blocking because it blocks the program from continuing until some condition has been met.
Once blocked, a program will wait for input (or some result) possibly indefinitely. Non-blocking
calls that send and receive messages in MPI do exist, but they are beyond the scope of this
lesson.

How to Compile and Link the Example
$ mpiCC -c mpi02.cpp -o mpi02.o

$ mpiCC -o mpi02 mpi02.o

Example Output
$ mpirun -np 2 ./mpi02

0 got 6 characters from 1: Hello

1 got 6 characters from 0: Hello

$./mpi02

--

MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD

with errorcode 1.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.

You may or may not see output from other processes, depending on

exactly when Open MPI kills them.

--

$ mpirun -np 4 ./mpi02

1 got 6 characters from 0: Hello

0 got 6 characters from 1: Hello

0 got 6 characters from 2: Hello

2 got 6 characters from 0: Hello

0 got 6 characters from 3: Hello

3 got 6 characters from 0: Hello

Three examples were given demonstrating the behavior when 1, 2, and 4 processes are used. It
can be seen that when running the example with a single process, Abort() is called as expected
and the example crashes. When running with 2 and 4 processes the output occurs (in order) as
expected.

6. Conclusion

A surprising amount of work can be accomplished using little more than sends and receives in
MPI. However, the library is extensive and offers great depth to message passing, including
process management. Even so its moderate learning curve combined with applicability make it
a powerful tool even for relatively inexperienced users. Questions that should be answered by
this extended introduction are:

● What is MPI? What is Open MPI?
● What are the two essential parts of an MPI application?
● How are the Open MPI command line tools used?
● What is one way to pass messages between processes?

