Restricted Symmetric Permutations

David Lonoff and Jonah Ostroff

Advisor: Eric Egge

π, σ are permutations. π contains σ wheneveven
length and relative order as σ.
The diagram of a permutation π (length n) is an $n \times n$ table where the box $(i, \pi(i))$
is marked with a dot for all $1 \leq i \leq n$. Example:

$\underbrace{\text { A New Fibonaci Identity }}_{\substack{\text { Our research also led us to a new identity involving sums of products of Fibonacci } \\ \text { numbers. }}}$
$F_{2 n-2}+\sum_{k=1}^{n} F_{2 n-4} 4^{n-k}=F_{2 n}$
Thisis equivivelent to showing $\sum_{n=1}^{n}=F_{2-1}-2^{2 n-k}=F_{n 2 n}$. How many ways can we tile
a board of flength $2 n-1$ with dominoes and squares? Answer 1: $F_{2 n-1}$
Answer 2: We consider the odd fault lines, the vertical bars adjoining cells $2 k+1$
and $2 k+2$ on our board. Such a fault line is unbreakable if it it spanned by a domino, otherwise it is breatable. Where is the righthmost unbreakable odd fault spaces tow thany ways cight be tiled? The spaces to the thelet be tilided How many ways can the

This naturally generalizes to
$F_{m m+r}=F_{F} F_{m}^{n}+\sum_{k=1}^{n} F_{m-m+m+1} F_{m-1} F_{m}^{m_{m}^{-x}}$

If σ has barred entries and meets theses conditions, then σ is uniquely determined
by what those barred entries are, yielding $\left(\begin{array}{c}\left({ }^{1}+1\right)\end{array}\right)$ possibilitites in the following form:

It is easy to s.e.
the above form
 yields
Theorem (Lonoff, Ostroff):

 Theorem (Lonoff, Ostroff)

$$
\left|S_{2 n+1}^{r e}(123,4231)\right|=\binom{n}{2}+
$$

