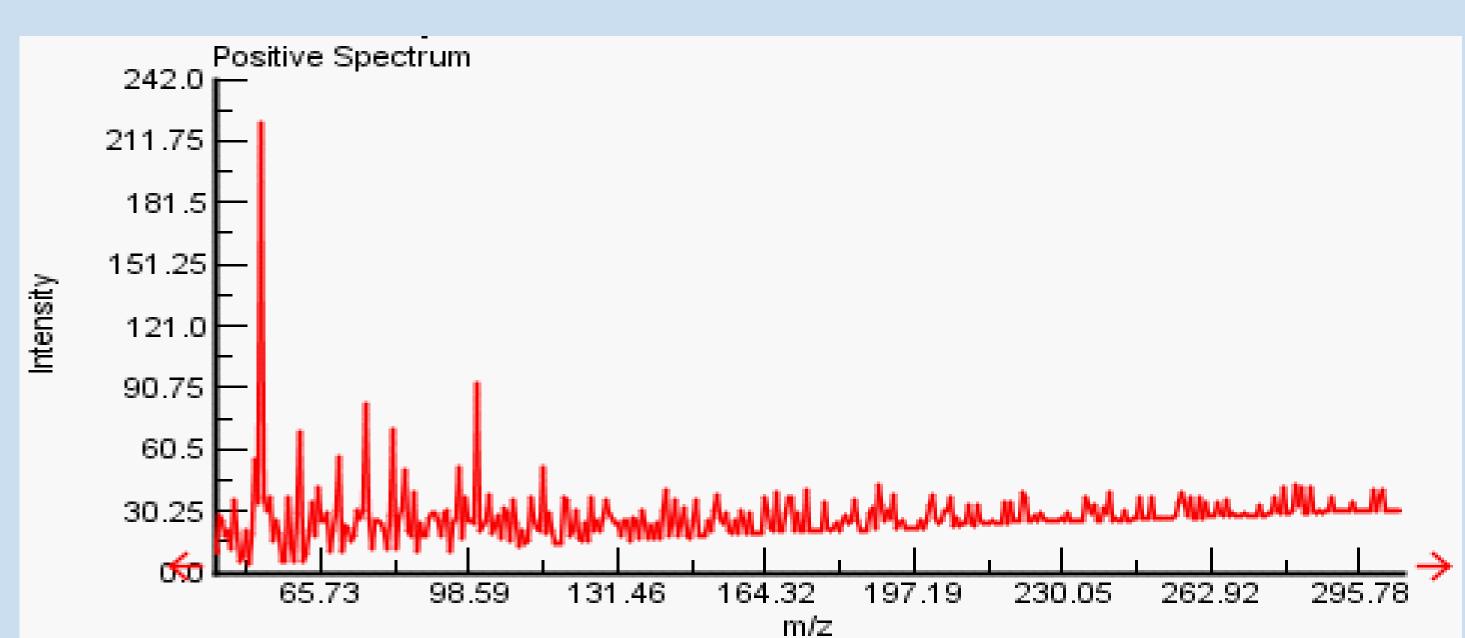
# **Determining a Relationship Between Two Distinct Atmospheric Datasets of Different Granularities** Sami Benzaid, Janara Christensen, David Musicant, Emma Turetsky


# ABSTRACT

Here, we present several methods of using data mining and statistical analysis to find a relationship between two different data sets of different granularities: atmospheric particles (and their elemental constituents) and elemental carbon (EC). Specifically, we wish to determine which elements in the atmosphere cause elemental carbon which is common in industrial zones and large cities and can normally be found in exhaust fumes and areas where there is visible carbon. In order to do this, we used machine learning regression algorithms including SVM regression and Lasso regression as well as regular linear regression.

## BACKGROUND

#### **Datasets:**

- ATOFMS (Atmospheric Time-Of-Flight Mass Spectrometer) Data
- Measurements of the amounts of different elements that make up an aerosol particle • Data is visualized in a spectrum, where quantities of elements are represented as peaks

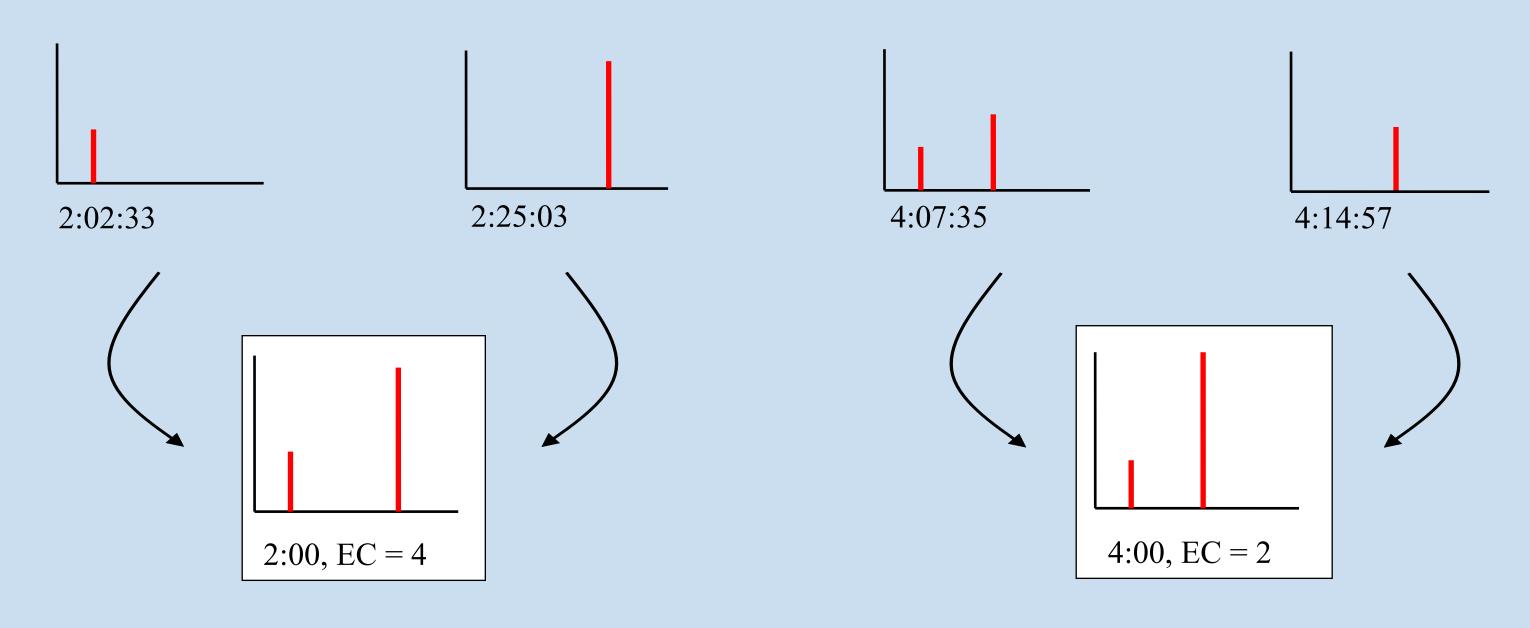


EC (Elemental Carbon) Data

- The amount of EC present in aerosol particles over a given period of time
- Generated by a machine that uses a filter substrate to collect aerosol particles, and then measures total EC using thermal methods within all particles captured

#### Goal:

- To discover a relation between aggregated ATOFMS data and EC.
- An equation that represents EC in terms of the most important peaks in ATOFMS output.


## **AGGREGATING THE DATA**

#### **Datasets are different granularities**

- ATOFMS data collected as many as several times per second
- EC data collected on an hourly basis

#### Aggregation

- Round the time stamps of the ATOFMS particle data to the nearest hour
- Adjust the peak scale for the size of the particle
- Add together the peaks for each element of all the particles in each time bin
- Match the new aggregated ATOFMS data for each hour with the EC value for each hour



# WEKA (Waikato Environment for Knowledge Analysis)

- Free package of machine-learning algorithms
- Variety of algorithms used for creating prediction models
- Popular among members of the data mining community

### WEKA ALGORITHMS

#### **SMOreg (Sequential Minimal Optimization)**

• Used to train a support vector regression model Support vector machines are fast (much faster than a standard linear regression) and generally provide little error in regression models.

#### **SMOreg with RBF (Radial Basis Function)**

- Similar to SMOreg, except it is non-linear and uses an RBF kernel instead of a polynomial one
- Tends to be more accurate than regular SMO regression.

### **PROBLEMS WITH WEKA**

#### Most important peaks

• Higher coefficients do not necessarily identify the most important peaks • SVM algorithms are susceptible to "splitting" the importance of a particular element between multiple elements that represent roughly the same information.

#### **Linear regression with multiples of 12**

• Linear regression using elements whose atomic masses are multiples of 12 (C, C2, C3, etc...) performs just as well as SMO regression with all elements available for use

#### **Too many variables**

• A model with only a few elements is preferable to a model with many elements because it is more likely to be applicable to many situations

#### R

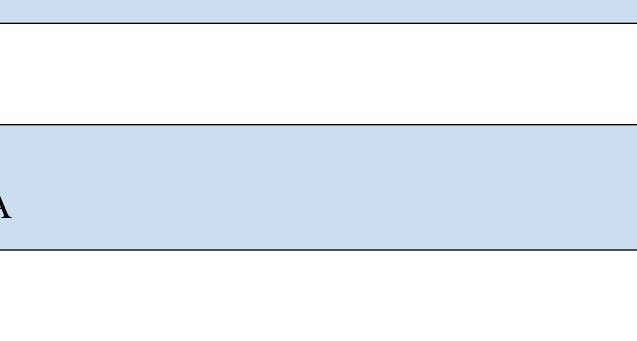
- Statistical analysis language
- Provides a different set of algorithms than WEKA

### **RALGORITHMS**

#### Lasso Regression

- Reduces as many of the coefficients as possible to zero
- A parameter that we pick, called the "bound," drives how many features are left
- By reducing the amount of features that are used in the model, lasso isolates the more important elements

#### **Least Squares Regression**


- Ran least squares regression on only the elements chosen by Lasso regression to get a model
- Leave-one-out cross validation used to determine prediction accuracy.

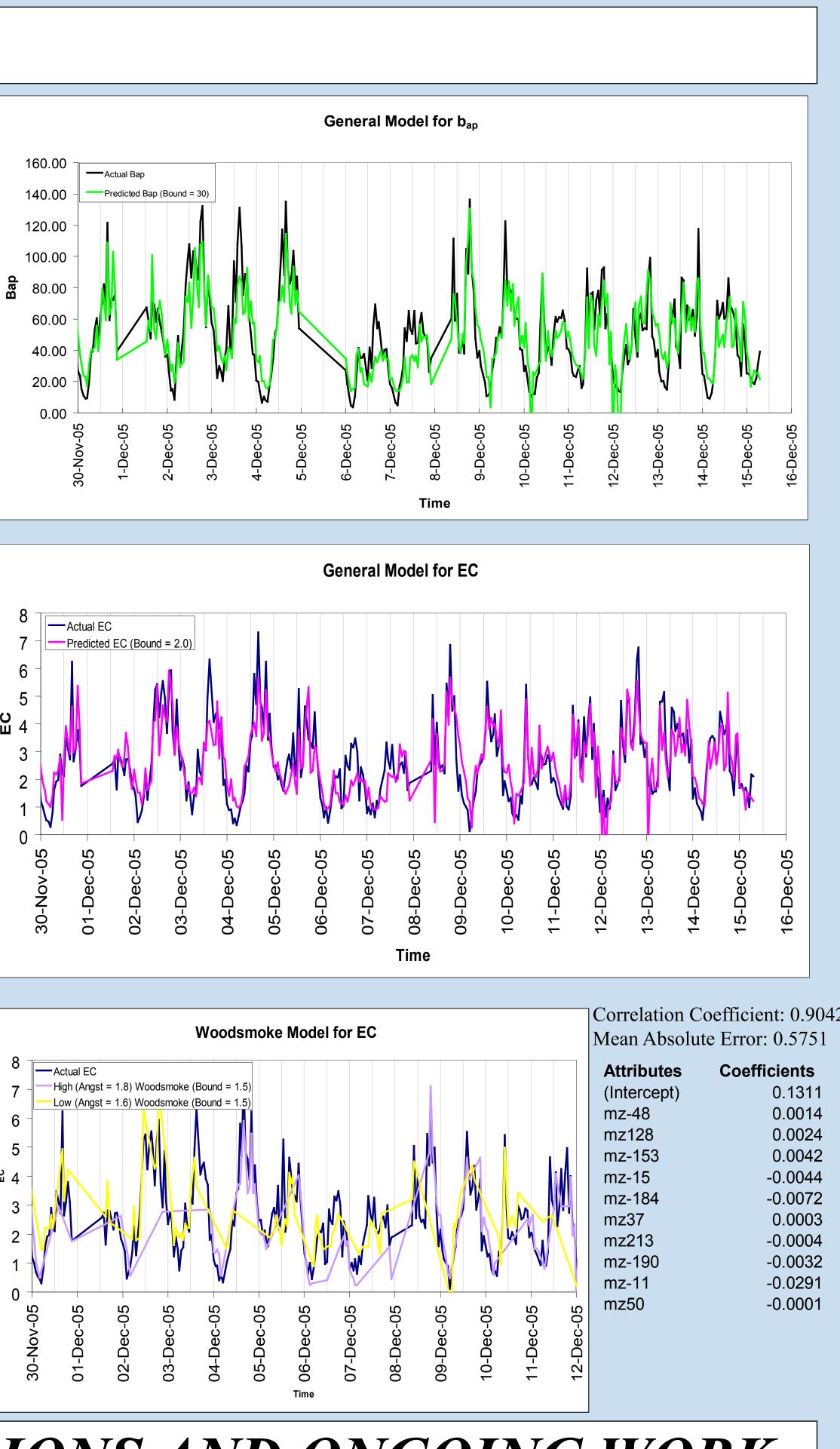
### WOODSMOKE

- Particles containing woodsmoke obscure the general model for EC
- Solution is to make two models-one for low woodsmoke and one for high woodsmoke
- Separate particles into low and high woodsmoke based on the "angstrom coefficient"

### • The data was difficult to cleanly separate into two pieces. **ABSORPTION COEFFICIENT**

- The absorption coefficient (b<sub>ap</sub>) is a value obtained through measuring the light absorbed by particles.
- EC values can be obtained from this quantity through the use of a conversion factor.
- In general, this conversion factor is not consistent.
- We provide an example model of  $b_{an}$  prediction here.




# MODELS

Correlation Coefficient: 0.8456 Mean Absolute Error: 11.7485

| Attributes      | Coefficients |
|-----------------|--------------|
| (Intercept)     | 11.6125      |
| mz <b>-</b> 48  | 0.0144       |
| mz <b>-</b> 97  | 0.0055       |
| mz84            | 0.0564       |
| mz40            | 0.0008       |
| mz <b>-</b> 210 | -0.1460      |
| mz112           | -0.1215      |
| mz-131          | -0.0448      |
| mz286           | -0.2252      |
| mz215           | 0.0598       |
| mz-93           | 0.0082       |
| mz213           | -0.0095      |
| mz-153          | 0.0128       |
| mz36            | 0.0007       |
| mz-225          | -0.0247      |
| mz48            | -0.0016      |
|                 |              |

Correlation Coefficient: 0.8213 Mean Absolute Error: .6082

| Coefficients |
|--------------|
| 0.8205       |
| 0.0006       |
| 0.0069       |
| -0.0156      |
| 0.0089       |
| -0.0072      |
| -0.0006      |
| 0.0010       |
| -0.0061      |
| 0.0004       |
| 0.0000       |
| -0.0025      |
| 0.0003       |
| 0.0015       |
| 0.0069       |
| -0.0120      |
|              |



Correlation Coefficient: .8046 Mean Absolute Error: 0.5697

| Attributes<br>(Intercept)<br>mz-299<br>mz-2<br>mz-253<br>mz154<br>mz207<br>mz105<br>mz105<br>mz-48<br>mz84<br>mz-109<br>mz-102<br>mz-275<br>mz157<br>mz74<br>mz74 | Coefficients<br>1.1983<br>0.1205<br>0.0033<br>-0.0297<br>-0.0022<br>-0.0008<br>-0.0075<br>0.0002<br>0.0034<br>0.0015<br>-0.0060<br>0.0831<br>-0.0029<br>-0.0013<br>0.0044<br>0.0044 | 8<br>7<br>High (And<br>6<br>5<br>3<br>4<br>3<br>2<br>1<br>0<br>20-NoN-02<br>0<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                     | 30-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mz40                                                                                                                                                              | 0.0000                                                                                                                                                                              | с<br>О ЗЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mz76                                                                                                                                                              | 0.0083                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



We came up with several models that correlate quantities of different types of particles to EC. The correlation coefficients that we were able to obtain are looking very promising. Though the data is still being investigated, this suggests that we can in fact use the m/zvalues provided by an ATOFMS to better understand quantitative EC data, to the point where we can make accurate predictions about it. Carbon-4 (m/z - 48) apppears to be an important contributer to EC as it is consistently one of the most important attributes (often the most important one) in the various models that we came up with. Additionally, we were able to find that we can achieve significantly better results when we allow the model to take any of the m/z values into account, as opposed to simply restricting it to m/z values that are multiples of 12 (Carbon). Finally, with regards to the woodsmoke data, although it is difficult to accurately determine a cut-off point between high and low woodsmoke, we did manage to find some high correlation coefficients when we generated models for certain cutoff points. Since the models for each side of these cutoff points were very different, this suggests that woodsmoke has an effect on what types of particles are used to predict quantities of EC in the air.



Our work is funded by NSF ITR grant IIS-0326328. The atmospheric data sets were provided by Deborah Gross of the Carleton College Chemistry Department, and Jamie Schauer and Dave Snyder from the University of Wisconsin - Madison. The original version of the aggregation algorithm that we used (in many different ways, modifying it to fit our purposes) was written by Leah Steinberg.

### **CONCLUSIONS AND ONGOING WORK**