Enhanced Sinks I:

Carbon Capture and Storage

Courtesy of S. Benson



Origin of Anthropogenic CO, Emissions

Land use Energy

(deforestation, ...) (fossil fuels)

: 63GtC/year y
1,6 GtC/year : (or 23 Gt CO, / year)

v

- 80%

World annual emissions: 8 Gt C / year, or 30 Gt CO, / year



2006 CO, Emissions from Fossil Fuel

Combustion by Sector and Fuel Type
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Net Zero Carbon Economy
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CO, Stationary Source Emissions by Category
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Global Distribution of Stationary Sources




Stationary Sources in US
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Carbon Dioxide Capture and Storage (CCS)
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Source: IPCC Carbon Capture and Storage Special Report 2005



CCS - System
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Carbon Dioxide Capture (stationary sources)
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* Air extraction can compensate
for CO, emissions anywhere




Anionic Exchange Resins

\ '\‘ / ->Moisture driven CO, swing

e Positive ions fixed to polymer matrix
o Negative ions are free to move
o Negative ions are hydroxides, OH"

@/ * Dry resin loads up to bicarbonate
o OH + C02 - HCO3' (hydroxide = bicarbonate)

e Wet resin releases CO, to carbonate
o 2HCO; = CO, +CO, +H,0




Setting the Scale for 1 ton/day

e 2 x 30 panels
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o can hold all panels

Copyright 2008 by Global Research Technologies, LLC, All Rights Reserved



CO, capture versus avoided

CO, avoidance costs = (COE_, - COE,)/(E .- Ecap)
m Emitted
Reference m Captured

Plant
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§< CO, captured >:

Capture
Plant
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CO, produced (kg/kWh)

Source: Herzog, MIT



The 3 Big Storage Options

e Injection of CO, as a liquid or supercritical gas in
permeable geological formations

e Demonstration Phase / Mature market (EOR)

* Injection of CO, as a liquid into the deep ocean
(depths > 1,000 m)

» Research / Demonstration Phase

* Chemical reaction of CO, with metal oxide
bearing materials to form chemically stable
carbonates

» Research



Geological Sequestration:

* low cost solution per ton of CO,

 experience from EOR, gas storage, liquid waste injection

* extensive monitoring needed

* leakage risk (contamination of groundwater resources and soils)
* public awareness and perception

Ocean Storage:

e unlimited storage capacity

* long residence time (hundreds of years)
* acidification, change in ocean chemistry
* impact on marine life

* public perception

* N0 experience

Mineral Carbonation:

* permanent storage

* long residence time

* no long-term monitoring monitoring needed
* expensive

* large environmental footprint
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Experience in CO, Storage

* Natural analogs (oil/gas reservoirs,
CO, reservoirs)

* Performance of industrial analogs

- 30+ years experience with CO, EOR

- 100 years experience with natural
gas storage

- Acid gas disposal

* ~10 years of performance of actual
CO, storage projects

- Sleipner, off-shore Norway, 1996
- Weyburn, Canada, 2000
- In Salah, Algeria, 2004

~35 Mt/yr are injected for CO,-EOR



In Salah Gas Project
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Source: BP




Sleipner Project — North Sea
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What Keeps CO, Underground?

" Injected at depths of ~1 km or deeper Overburden

into porous rock Secondary seals
Existing wells

= Primary trapping

Seal

Geographically extensive
Low permeability

- Beneath seals of lower permeability rock

= Secondary trapping
- CO, dissolved in water ~1km

- CO, is trapped by capillary forces

- CO, is mineralized to solid minerals (CaCO,)




Storage Mechanism

diagram not to scale Injection pipe

Cap rock
(shale, or other
impermeable rock)
Water
' A
B _ CO, plume
Old oil or gas ) 2R
reservoir

(6.9 sandstone) \ Q Sand grains

Courtesy: Scottish Center for Carbon Capture & Storage



Scale of the Problem

* 1,000 Mwe coal-fired power plant: 10 Mt CO,/year -> 700 Mt CO,

* Total CO, volume ~1 km?3 (density of 780 kg/m3 at 40°C, 150 bar)

* CO, foot print in the subsurface could reach 100 km? (Pruess et al. 2001)
» US: 1,500 coal-fired generators, capacity of 335,830 MWe

» CCS Scale Million — Billion Tons per year



Potential Storage Reservoirs

CO2 Sinks
[ Unmineable Coal Seams

- Deep Saline Formations

- Oil and Gas Reservoirs

Source: www.natcarb.org



Geologic Storage Capacity in the United
States

» Assumption: only 1 — 4% of geologic capacity can be used for
CO, storage.

> total estimated geological CO, storage: 3,600 — 12,900 billion
tons of CO.,.

» To put that in perspective, the United States’ current annual CO,
emissions are about ~ 7 billion tons per year.



Physical Properties of CO,

Carbon dioxide: Temperature = pressure diagram
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* CO, is in a supercritical state at temperatures > 31.1°C and pressures > 7.38 MPa
(73.8 bar).

* A supercritical fluid has some of the properties of a liquid (e.g. density) and a
gas (e.g. low viscosity)

» CO, in a supercritical state is not miscible with water



Assessing Adequacy of Subsurface Volumes:
the Value of Compression

e At depths >800 m CO, is stored as a dense
phase (1metric ton = about 1.6 cubic m)

7 Gigatons (7 x 10°T) CO,/
year US emissions from
stationary sources:

if spread evenly over US:

0.4 mm/year at
reservoir conditions
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Earth is not a leak proof container

Shallow
grounchwates
wall

Off gas from wall Accumulation

Source: www.westcarb.org
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IPCC, 2005: Carbon Capture and Storage Special Report



Carbon The ground state of
carbon is a mineral
carbonate

400 kd/mole

Carbon Dioxide

60...180 kJ/mole
Carbonate




Nature shows us........

* rocks convert atmospheric CO, (dissolved in
surface waters) to stable, inert carbonate

minerals

* they do this surprisingly fast, and the process
gives off energy

* we could speed up this process, taking
advantage of natural energy sources



Mineral Carbonation

basalt
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Ex-situ Mineral Carbonation
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IPCC, 2005: Carbon Capture and Storage Special Report



Mineral Carbonation of Mine Tailings

Clinton Creek mine, Yukon -> 160,000 tons of C2 sequestered




Basalt
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Source: Pruess et al. 2001

» Basalt contains about 10 wt% CaO and 6 wt% MgO
which can be used for mineral carbonation




CO, Storage in Basalts

* Columbia River Basalt: 36 to 148 billion tons of CO, (McGrail et al.
2006)



In Situ Mineral Carbonation

Dissolution of CO2 and Dissociation

Kh
CO,(g) = CO,(aq)

Kl - + KZ - +
CO,(aq) + H,0 = HCO, + H*=CO * + 2H

Mineral Dissolution
kl
Mg SiO, + 4H" -> 2Mg?* + SiO_+ 2H O
k2
CaAlSi,O,+ 2H* + H,O -> Ca* + Al Si,O(OH),

Mineral Precipitation
K

3

(Ca**, Mg*, Fe*) + CO,* = (Ca, Mg, Fe)CO,(s)



MINERAL CO, SEQUESTRATION INTO BASALT:
THE CARBFIX PROJECT

e




Magmatic CO, Source

Fumaroles
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Storage Formation
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0.05kg/s of
98% CO, gas
pumped and mixed
with the water

I ‘ 2L/ s ofwater
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CarbFix Test Site - Monitoring
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MVA Needs Quantification

* Distinguish stored CO, from natural CO, sources

Radiocarbon Tagging Method
»Labeling the injected CO, with an isotopic tracer

12Co, -> 14COo,



Carbon-14 (*C) as a MVA tool

Carbon Isotopes

Stable: 12C- 98.93%
13C - 1.07% 13¢/12C=0.01
Radioactive: 14C 1ppt 14C/12C = 1.3x10°12

half-life of about 5730 years

- deep reservoirs have no or very small amounts of 4C
« 14C is a smart tracer for:

- reaction processes (dissolution — precipitation)
- biogeochemical processes
- mixing processes in combination with conservative tracers
- inventory of stored CO,
» Tagging of 1Gt CO, requires 320 grams of pure 4C






Challenges for CCS

* Regulatory framework
e Liability issues (e.g. power space ownership)
* Monitoring & accounting

* Financing

* Public opposition (e.g. “stop coal”)




